vector-database-management
Comprehensive guide for managing vector databases including Pinecone, Weaviate, and Chroma for semantic search, RAG systems, and similarity-based applications
About vector-database-management
vector-database-management is a Claude AI skill developed by manutej. Comprehensive guide for managing vector databases including Pinecone, Weaviate, and Chroma for semantic search, RAG systems, and similarity-based applications This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.
Why use vector-database-management? With 0 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.
| name | vector-database-management |
| description | Comprehensive guide for managing vector databases including Pinecone, Weaviate, and Chroma for semantic search, RAG systems, and similarity-based applications |
| version | 1.0.0 |
| category | data-engineering |
| tags | ["vector-database","embeddings","semantic-search","rag","pinecone","weaviate","chroma","similarity-search","machine-learning","ai"] |
| prerequisites | ["Python 3.8+","Basic understanding of embeddings and vector representations","Familiarity with REST APIs","Knowledge of similarity metrics (cosine, euclidean, dot product)"] |
Vector Database Management
Table of Contents
- Introduction
- Vector Embeddings Fundamentals
- Database Setup & Configuration
- Index Operations
- Vector Operations
- Similarity Search
- Metadata Filtering
- Hybrid Search
- Namespace & Collection Management
- Performance & Scaling
- Production Best Practices
- Cost Optimization
Introduction
Vector databases are specialized systems designed to store, index, and query high-dimensional vector embeddings efficiently. They power modern AI applications including semantic search, recommendation systems, RAG (Retrieval Augmented Generation), and similarity-based matching.
Key Concepts
- Vector Embeddings: Numerical representations of data (text, images, audio) in high-dimensional space
- Similarity Search: Finding vectors that are "close" to a query vector using distance metrics
- Metadata Filtering: Combining vector similarity with structured data filtering
- Indexing: Optimization structures (HNSW, IVF, etc.) for fast approximate nearest neighbor search
Database Comparison
| Feature | Pinecone | Weaviate | Chroma |
|---|---|---|---|
| Deployment | Fully managed | Managed or self-hosted | Self-hosted or cloud |
| Index Types | Serverless, Pods | HNSW | HNSW |
| Metadata Filtering | Advanced | GraphQL-based | Simple |
| Hybrid Search | Sparse-Dense | Built-in | Limited |
| Scale | Massive | Large | Small-Medium |
| Best For | Production RAG | Knowledge graphs | Local development |
Vector Embeddings Fundamentals
Understanding Vector Representations
Vector embeddings transform unstructured data into numerical arrays that capture semantic meaning:
# Text to embeddings using OpenAI from openai import OpenAI client = OpenAI(api_key="YOUR_API_KEY") def generate_embedding(text: str, model: str = "text-embedding-3-small") -> list[float]: """Generate embeddings from text using OpenAI.""" response = client.embeddings.create( input=text, model=model ) return response.data[0].embedding # Example usage text = "Vector databases enable semantic search capabilities" embedding = generate_embedding(text) print(f"Embedding dimension: {len(embedding)}") # 1536 dimensions print(f"First 5 values: {embedding[:5]}")
Popular Embedding Models
# 1. OpenAI Embeddings (Production-grade) from openai import OpenAI def openai_embeddings(texts: list[str]) -> list[list[float]]: """Batch generate OpenAI embeddings.""" client = OpenAI(api_key="YOUR_API_KEY") response = client.embeddings.create( input=texts, model="text-embedding-3-large" # 3072 dimensions ) return [item.embedding for item in response.data] # 2. Sentence Transformers (Open-source) from sentence_transformers import SentenceTransformer def sentence_transformer_embeddings(texts: list[str]) -> list[list[float]]: """Generate embeddings using Sentence Transformers.""" model = SentenceTransformer('all-MiniLM-L6-v2') # 384 dimensions embeddings = model.encode(texts) return embeddings.tolist() # 3. Cohere Embeddings import cohere def cohere_embeddings(texts: list[str]) -> list[list[float]]: """Generate embeddings using Cohere.""" co = cohere.Client("YOUR_API_KEY") response = co.embed( texts=texts, model="embed-english-v3.0", input_type="search_document" ) return response.embeddings
Embedding Dimensions & Trade-offs
# Different embedding models for different use cases EMBEDDING_CONFIGS = { "openai-small": { "model": "text-embedding-3-small", "dimensions": 1536, "cost_per_1m": 0.02, "use_case": "General purpose, cost-effective" }, "openai-large": { "model": "text-embedding-3-large", "dimensions": 3072, "cost_per_1m": 0.13, "use_case": "High accuracy requirements" }, "sentence-transformers": { "model": "all-MiniLM-L6-v2", "dimensions": 384, "cost_per_1m": 0.00, # Open-source "use_case": "Local development, privacy-sensitive" }, "cohere-multilingual": { "model": "embed-multilingual-v3.0", "dimensions": 1024, "cost_per_1m": 0.10, "use_case": "Multi-language applications" } }
Database Setup & Configuration
Pinecone Setup
# Install Pinecone SDK # pip install pinecone-client from pinecone import Pinecone, ServerlessSpec # Initialize Pinecone client pc = Pinecone(api_key="YOUR_API_KEY") # List existing indexes indexes = pc.list_indexes() print(f"Existing indexes: {[idx.name for idx in indexes]}") # Create serverless index (recommended for production) index_name = "production-search" if index_name not in [idx.name for idx in pc.list_indexes()]: pc.create_index( name=index_name, dimension=1536, # Match your embedding model metric="cosine", # cosine, dotproduct, or euclidean spec=ServerlessSpec( cloud="aws", region="us-east-1" ), deletion_protection="enabled", # Prevent accidental deletion tags={ "environment": "production", "team": "ml", "project": "semantic-search" } ) print(f"Created index: {index_name}") # Connect to index index = pc.Index(index_name) # Get index stats stats = index.describe_index_stats() print(f"Index stats: {stats}")
Selective Metadata Indexing (Pinecone)
# Configure which metadata fields to index for filtering # This optimizes memory usage and query performance from pinecone import Pinecone, ServerlessSpec pc = Pinecone(api_key="YOUR_API_KEY") # Create index with metadata configuration pc.create_index( name="optimized-index", dimension=1536, metric="cosine", spec=ServerlessSpec( cloud="aws", region="us-east-1", schema={ "fields": { # Index these fields for filtering "document_id": {"filterable": True}, "category": {"filterable": True}, "created_at": {"filterable": True}, "tags": {"filterable": True}, # Store but don't index (saves memory) "document_title": {"filterable": False}, "document_url": {"filterable": False}, "full_content": {"filterable": False} } } ) ) # This configuration allows you to: # 1. Filter by document_id, category, created_at, tags # 2. Retrieve document_title, document_url, full_content in results # 3. Save memory by not indexing non-filterable fields
Weaviate Setup
# Install Weaviate client # pip install weaviate-client import weaviate from weaviate.classes.config import Configure, Property, DataType # Connect to Weaviate client = weaviate.connect_to_local() # Or connect to Weaviate Cloud # client = weaviate.connect_to_wcs( # cluster_url="YOUR_WCS_URL", # auth_credentials=weaviate.auth.AuthApiKey("YOUR_API_KEY") # ) # Create collection (schema) try: collection = client.collections.create( name="Documents", vectorizer_config=Configure.Vectorizer.text2vec_openai( model="text-embedding-3-small" ), properties=[ Property(name="title", data_type=DataType.TEXT), Property(name="content", data_type=DataType.TEXT), Property(name="category", data_type=DataType.TEXT), Property(name="created_at", data_type=DataType.DATE), Property(name="tags", data_type=DataType.TEXT_ARRAY) ] ) print(f"Created collection: Documents") except Exception as e: print(f"Collection exists or error: {e}") # Get collection documents = client.collections.get("Documents") # Check collection info print(documents.config.get())
Chroma Setup
# Install Chroma # pip install chromadb import chromadb from chromadb.config import Settings # Initialize Chroma client (persistent) client = chromadb.PersistentClient(path="./chroma_db") # Or use ephemeral (in-memory) # client = chromadb.EphemeralClient() # Create or get collection collection = client.get_or_create_collection( name="documents", metadata={ "description": "Document collection for semantic search", "hnsw:space": "cosine" # cosine, l2, or ip (inner product) } ) # List all collections collections = client.list_collections() print(f"Available collections: {[c.name for c in collections]}") # Get collection info print(f"Collection count: {collection.count()}")
Index Operations
Creating Indexes with Different Configurations
from pinecone import Pinecone, ServerlessSpec, PodSpec pc = Pinecone(api_key="YOUR_API_KEY") # 1. Serverless index (auto-scaling, pay-per-use) pc.create_index( name="serverless-index", dimension=1536, metric="cosine", spec=ServerlessSpec( cloud="aws", region="us-east-1" ) ) # 2. Pod-based index (dedicated resources) pc.create_index( name="pod-index", dimension=1536, metric="dotproduct", spec=PodSpec( environment="us-east-1-aws", pod_type="p1.x1", # Performance tier pods=2, # Number of pods replicas=2, # Replicas for high availability shards=1 ) ) # 3. Sparse index (for BM25-like search) pc.create_index( name="sparse-index", dimension=None, # Sparse vectors don't have fixed dimension metric="dotproduct", spec=ServerlessSpec( cloud="aws", region="us-east-1" ) )
Index Management Operations
from pinecone import Pinecone pc = Pinecone(api_key="YOUR_API_KEY") # List all indexes indexes = pc.list_indexes() for idx in indexes: print(f"Name: {idx.name}, Status: {idx.status.state}, Host: {idx.host}") # Describe specific index index_info = pc.describe_index("production-search") print(f"Dimension: {index_info.dimension}") print(f"Metric: {index_info.metric}") print(f"Status: {index_info.status}") # Connect to index index = pc.Index("production-search") # Get index statistics stats = index.describe_index_stats() print(f"Total vectors: {stats.total_vector_count}") print(f"Namespaces: {stats.namespaces}") print(f"Index fullness: {stats.index_fullness}") # Delete index (be careful!) # pc.delete_index("test-index")
Configuring Index for Optimal Performance
# Configuration for different use cases # 1. High-throughput search (many queries/second) pc.create_index( name="high-throughput", dimension=1536, metric="cosine", spec=PodSpec( environment="us-east-1-aws", pod_type="p2.x1", # Higher performance tier pods=4, replicas=3 # More replicas = higher query throughput ) ) # 2. Large-scale storage (billions of vectors) pc.create_index( name="large-scale", dimension=1536, metric="cosine", spec=PodSpec( environment="us-east-1-aws", pod_type="s1.x1", # Storage-optimized pods=8, shards=4 # More shards = more storage capacity ) ) # 3. Cost-optimized development pc.create_index( name="dev-environment", dimension=1536, metric="cosine", spec=ServerlessSpec( cloud="aws", region="us-east-1" ) # Serverless = pay only for what you use )
Vector Operations
Upserting Vectors (Pinecone)
from pinecone import Pinecone import uuid pc = Pinecone(api_key="YOUR_API_KEY") index = pc.Index("production-search") # 1. Single vector upsert vector_id = str(uuid.uuid4()) index.upsert( vectors=[ { "id": vector_id, "values": [0.1, 0.2, 0.3, ...], # 1536 dimensions "metadata": { "title": "Introduction to Vector Databases", "category": "education", "author": "John Doe", "created_at": "2024-01-15", "tags": ["ml", "ai", "databases"] } } ], namespace="documents" ) # 2. Batch upsert (efficient for large datasets) batch_size = 100 vectors = [] for i, (doc_id, embedding, metadata) in enumerate(documents): vectors.append({ "id": doc_id, "values": embedding, "metadata": metadata }) # Upsert in batches if len(vectors) >= batch_size or i == len(documents) - 1: index.upsert(vectors=vectors, namespace="documents") print(f"Upserted batch of {len(vectors)} vectors") vectors = [] # 3. Upsert with async for better performance from pinecone import Pinecone import asyncio async def upsert_vectors_async(vectors_batch): """Async upsert for parallel processing.""" index.upsert(vectors=vectors_batch, namespace="documents", async_req=True) # Parallel upsert tasks = [] for batch in batches: tasks.append(upsert_vectors_async(batch)) await asyncio.gather(*tasks)
Sparse Vector Operations (Pinecone)
# Sparse vectors are useful for keyword-based search (like BM25) # Combined with dense vectors for hybrid search from pinecone import Pinecone pc = Pinecone(api_key="YOUR_API_KEY") index = pc.Index("hybrid-search-index") # Upsert vector with both dense and sparse components index.upsert( vectors=[ { "id": "doc1", "values": [0.1, 0.2, ..., 0.5], # Dense vector "sparse_values": { "indices": [10, 45, 123, 234, 678], # Token IDs "values": [0.8, 0.6, 0.9, 0.7, 0.5] # TF-IDF weights }, "metadata": {"title": "Hybrid Search Document"} } ], namespace="hybrid" ) # Query with hybrid search results = index.query( vector=[0.1, 0.2, ..., 0.5], # Dense query vector sparse_vector={ "indices": [10, 45, 123], "values": [0.8, 0.7, 0.9] }, top_k=10, namespace="hybrid", include_metadata=True )
Vector Operations (Weaviate)
import weaviate from weaviate.classes.query import MetadataQuery client = weaviate.connect_to_local() documents = client.collections.get("Documents") # 1. Insert single object doc_uuid = documents.data.insert( properties={ "title": "Vector Database Guide", "content": "A comprehensive guide to vector databases...", "category": "tutorial", "created_at": "2024-01-15T10:00:00Z", "tags": ["database", "ml", "ai"] } ) print(f"Inserted: {doc_uuid}") # 2. Batch insert with documents.batch.dynamic() as batch: for doc in document_list: batch.add_object( properties={ "title": doc["title"], "content": doc["content"], "category": doc["category"], "created_at": doc["created_at"], "tags": doc["tags"] } ) # 3. Insert with custom vector documents.data.insert( properties={"title": "Custom Vector Doc", "content": "..."}, vector=[0.1, 0.2, 0.3, ...] # Your pre-computed vector ) # 4. Update object documents.data.update( uuid=doc_uuid, properties={"title": "Updated Title"} ) # 5. Delete object documents.data.delete_by_id(uuid=doc_uuid)
Vector Operations (Chroma)
import chromadb client = chromadb.PersistentClient(path="./chroma_db") collection = client.get_collection("documents") # 1. Add documents with auto-embedding collection.add( documents=[ "This is document 1", "This is document 2", "This is document 3" ], metadatas=[ {"category": "tech", "author": "Alice"}, {"category": "science", "author": "Bob"}, {"category": "tech", "author": "Charlie"} ], ids=["doc1", "doc2", "doc3"] ) # 2. Add with custom embeddings collection.add( embeddings=[ [0.1, 0.2, 0.3, ...], [0.4, 0.5, 0.6, ...] ], metadatas=[ {"title": "Doc 1"}, {"title": "Doc 2"} ], ids=["custom1", "custom2"] ) # 3. Update documents collection.update( ids=["doc1"], documents=["Updated document content"], metadatas=[{"category": "tech", "updated": True}] ) # 4. Delete documents collection.delete(ids=["doc1", "doc2"]) # 5. Get documents by IDs results = collection.get( ids=["doc1", "doc2"], include=["documents", "metadatas", "embeddings"] )
Similarity Search
Basic Similarity Search (Pinecone)
from pinecone import Pinecone from openai import OpenAI # Initialize clients pc = Pinecone(api_key="PINECONE_API_KEY") openai_client = OpenAI(api_key="OPENAI_API_KEY") index = pc.Index("production-search") # 1. Generate query embedding query_text = "What are the benefits of vector databases?" response = openai_client.embeddings.create( input=query_text, model="text-embedding-3-small" ) query_embedding = response.data[0].embedding # 2. Search for similar vectors results = index.query( vector=query_embedding, top_k=10, namespace="documents", include_values=False, include_metadata=True ) # 3. Process results print(f"Found {len(results.matches)} results") for match in results.matches: print(f"ID: {match.id}") print(f"Score: {match.score:.4f}") print(f"Title: {match.metadata.get('title')}") print(f"Category: {match.metadata.get('category')}") print("---")
Search by ID (Query by Example)
# Search using an existing vector as query results = index.query( id="existing-doc-id", # Use this document as the query top_k=10, namespace="documents", include_metadata=True ) # Useful for "find similar items" features print(f"Documents similar to {results.matches[0].metadata.get('title')}:") for match in results.matches[1:]: # Skip first (self) print(f"- {match.metadata.get('title')} (score: {match.score:.4f})")
Multi-vector Search (Pinecone)
# Search multiple query vectors in one request query_embeddings = [ [0.1, 0.2, ...], # Query 1 [0.3, 0.4, ...], # Query 2 [0.5, 0.6, ...] # Query 3 ] results = index.query( queries=query_embeddings, top_k=5, namespace="documents", include_metadata=True ) # Process results for each query for i, query_results in enumerate(results): print(f"\nResults for query {i+1}:") for match in query_results.matches: print(f"- {match.metadata.get('title')} (score: {match.score:.4f})")
Similarity Search (Weaviate)
import weaviate from weaviate.classes.query import MetadataQuery client = weaviate.connect_to_local() documents = client.collections.get("Documents") # 1. Near text search (semantic) response = documents.query.near_text( query="vector database performance optimization", limit=10, return_metadata=MetadataQuery(distance=True, certainty=True) ) for obj in response.objects: print(f"Title: {obj.properties['title']}") print(f"Distance: {obj.metadata.distance:.4f}") print(f"Certainty: {obj.metadata.certainty:.4f}") print("---") # 2. Near vector search (with custom embedding) response = documents.query.near_vector( near_vector=[0.1, 0.2, 0.3, ...], limit=10 ) # 3. Near object search (find similar to existing object) response = documents.query.near_object( near_object="uuid-of-reference-object", limit=10 )
Similarity Search (Chroma)
import chromadb client = chromadb.PersistentClient(path="./chroma_db") collection = client.get_collection("documents") # 1. Query with text (auto-embedding) results = collection.query( query_texts=["What is machine learning?"], n_results=10, include=["documents", "metadatas", "distances"] ) print(f"Found {len(results['ids'][0])} results") for i, doc_id in enumerate(results['ids'][0]): print(f"ID: {doc_id}") print(f"Distance: {results['distances'][0][i]:.4f}") print(f"Document: {results['documents'][0][i][:100]}...") print(f"Metadata: {results['metadatas'][0][i]}") print("---") # 2. Query with custom embedding results = collection.query( query_embeddings=[[0.1, 0.2, 0.3, ...]], n_results=10 )
Metadata Filtering
Pinecone Metadata Filters
from pinecone import Pinecone pc = Pinecone(api_key="YOUR_API_KEY") index = pc.Index("production-search") # 1. Equality filter results = index.query( vector=query_embedding, top_k=10, filter={"category": {"$eq": "education"}}, include_metadata=True ) # 2. Inequality filter results = index.query( vector=query_embedding, top_k=10, filter={"year": {"$ne": 2023}}, include_metadata=True ) # 3. Range filters results = index.query( vector=query_embedding, top_k=10, filter={ "$and": [ {"year": {"$gte": 2020}}, {"year": {"$lte": 2024}} ] }, include_metadata=True ) # 4. In/Not-in filters results = index.query( vector=query_embedding, top_k=10, filter={ "category": {"$in": ["education", "tutorial", "guide"]} }, include_metadata=True ) # 5. Existence check results = index.query( vector=query_embedding, top_k=10, filter={"author": {"$exists": True}}, include_metadata=True ) # 6. Complex AND/OR queries results = index.query( vector=query_embedding, top_k=10, filter={ "$and": [ {"category": {"$eq": "education"}}, { "$or": [ {"year": {"$eq": 2024}}, {"featured": {"$eq": True}} ] }, {"tags": {"$in": ["ml", "ai"]}} ] }, include_metadata=True ) # 7. Greater than/Less than results = index.query( vector=query_embedding, top_k=10, filter={ "view_count": {"$gt": 1000}, "rating": {"$gte": 4.5} }, include_metadata=True )
Production Metadata Filter Patterns
# Pattern 1: Time-based filtering (recent content) from datetime import datetime, timedelta def search_recent_documents(query_text: str, days: int = 30): """Search only documents from last N days.""" cutoff_date = (datetime.now() - timedelta(days=days)).isoformat() results = index.query( vector=generate_embedding(query_text), top_k=10, filter={ "created_at": {"$gte": cutoff_date} }, include_metadata=True ) return results # Pattern 2: User permission filtering def search_with_permissions(query_text: str, user_id: str, user_roles: list): """Search only documents user has access to.""" results = index.query( vector=generate_embedding(query_text), top_k=10, filter={ "$or": [ {"owner_id": {"$eq": user_id}}, {"shared_with": {"$in": [user_id]}}, {"public": {"$eq": True}}, {"required_roles": {"$in": user_roles}} ] }, include_metadata=True ) return results # Pattern 3: Multi-tenant filtering def search_tenant_documents(query_text: str, tenant_id: str, category: str = None): """Search within a specific tenant's data.""" filter_dict = {"tenant_id": {"$eq": tenant_id}} if category: filter_dict["category"] = {"$eq": category} results = index.query( vector=generate_embedding(query_text), top_k=10, filter=filter_dict, include_metadata=True ) return results # Pattern 4: Faceted search def faceted_search(query_text: str, facets: dict): """Search with multiple facet filters.""" filter_conditions = [] for field, values in facets.items(): if isinstance(values, list): filter_conditions.append({field: {"$in": values}}) else: filter_conditions.append({field: {"$eq": values}}) results = index.query( vector=generate_embedding(query_text), top_k=10, filter={"$and": filter_conditions} if filter_conditions else {}, include_metadata=True ) return results # Usage results = faceted_search( "machine learning tutorials", facets={ "category": ["education", "tutorial"], "difficulty": "beginner", "language": ["english", "spanish"] } )
Weaviate Metadata Filtering
import weaviate from weaviate.classes.query import Filter client = weaviate.connect_to_local() documents = client.collections.get("Documents") # 1. Simple equality filter response = documents.query.near_text( query="vector databases", limit=10, filters=Filter.by_property("category").equal("education") ) # 2. Greater than filter response = documents.query.near_text( query="machine learning", limit=10, filters=Filter.by_property("year").greater_than(2020) ) # 3. Contains any filter response = documents.query.near_text( query="AI tutorials", limit=10, filters=Filter.by_property("tags").contains_any(["ml", "ai", "deep-learning"]) ) # 4. Complex AND/OR filters response = documents.query.near_text( query="database optimization", limit=10, filters=( Filter.by_property("category").equal("tutorial") & (Filter.by_property("difficulty").equal("beginner") | Filter.by_property("featured").equal(True)) ) )
Chroma Metadata Filtering
import chromadb client = chromadb.PersistentClient(path="./chroma_db") collection = client.get_collection("documents") # 1. Simple equality filter results = collection.query( query_texts=["vector databases"], n_results=10, where={"category": "education"} ) # 2. AND conditions results = collection.query( query_texts=["machine learning"], n_results=10, where={ "$and": [ {"category": "education"}, {"difficulty": "beginner"} ] } ) # 3. OR conditions results = collection.query( query_texts=["AI tutorials"], n_results=10, where={ "$or": [ {"category": "education"}, {"category": "tutorial"} ] } ) # 4. Greater than/Less than results = collection.query( query_texts=["recent content"], n_results=10, where={"year": {"$gte": 2023}} ) # 5. In operator results = collection.query( query_texts=["programming guides"], n_results=10, where={"language": {"$in": ["python", "javascript", "go"]}} )
Hybrid Search
Pinecone Hybrid Search (Dense + Sparse)
from pinecone import Pinecone from typing import Dict, List import re from collections import Counter pc = Pinecone(api_key="YOUR_API_KEY") index = pc.Index("hybrid-search-index") def create_sparse_vector(text: str, top_k: int = 100) -> Dict: """Create sparse vector using simple TF approach.""" # Tokenize tokens = re.findall(r'\w+', text.lower()) # Calculate term frequencies tf = Counter(tokens) # Create vocabulary mapping vocab = {word: hash(word) % 10000 for word in set(tokens)} # Get top-k terms top_terms = tf.most_common(top_k) # Create sparse vector indices = [vocab[term] for term, _ in top_terms] values = [float(freq) / len(tokens) for _, freq in top_terms] return { "indices": indices, "values": values } def hybrid_search(query_text: str, top_k: int = 10, alpha: float = 0.5): """ Perform hybrid search combining dense and sparse vectors. alpha: weight for dense search (0.0 = sparse only, 1.0 = dense only) """ # Generate dense vector dense_vector = generate_embedding(query_text) # Generate sparse vector sparse_vector = create_sparse_vector(query_text) # Hybrid query results = index.query( vector=dense_vector, sparse_vector=sparse_vector, top_k=top_k, include_metadata=True ) return results # Example usage results = hybrid_search("machine learning vector databases", top_k=10) for match in results.matches: print(f"{match.metadata['title']}: {match.score:.4f}")
Weaviate Hybrid Search
import weaviate client = weaviate.connect_to_local() documents = client.collections.get("Documents") # Hybrid search (combines dense vector + BM25 keyword search) response = documents.query.hybrid( query="vector database performance", limit=10, alpha=0.5, # 0 = pure keyword, 1 = pure vector, 0.5 = balanced fusion_type="rankedFusion" # or "relativeScore" ) for obj in response.objects: print(f"Title: {obj.properties['title']}") print(f"Score: {obj.metadata.score}") print("---") # Hybrid search with filters response = documents.query.hybrid( query="machine learning tutorials", limit=10, alpha=0.7, # Favor semantic search filters=Filter.by_property("category").equal("education") ) # Hybrid search with custom vector response = documents.query.hybrid( query="custom query", vector=[0.1, 0.2, 0.3, ...], # Your pre-computed vector limit=10, alpha=0.5 )
BM25 + Vector Hybrid (Custom Implementation)
from rank_bm25 import BM25Okapi import numpy as np class HybridSearchEngine: """Custom hybrid search combining BM25 and vector search.""" def __init__(self, index, documents: List[Dict]): self.index = index self.documents = documents # Build BM25 index tokenized_docs = [doc['content'].lower().split() for doc in documents] self.bm25 = BM25Okapi(tokenized_docs) self.doc_ids = [doc['id'] for doc in documents] def search(self, query: str, top_k: int = 10, alpha: float = 0.5): """ Hybrid search with custom score fusion. alpha: weight for vector search (1-alpha for BM25) """ # 1. Vector search query_embedding = generate_embedding(query) vector_results = self.index.query( vector=query_embedding, top_k=top_k * 2, # Get more candidates include_metadata=True ) # 2. BM25 search tokenized_query = query.lower().split() bm25_scores = self.bm25.get_scores(tokenized_query) # 3. Normalize scores vector_scores = { m.id: m.score for m in vector_results.matches } max_vec_score = max(vector_scores.values()) if vector_scores else 1.0 max_bm25_score = max(bm25_scores) if max(bm25_scores) > 0 else 1.0 # 4. Combine scores hybrid_scores = {} all_ids = set(vector_scores.keys()) | set(self.doc_ids) for doc_id in all_ids: vec_score = vector_scores.get(doc_id, 0) / max_vec_score idx = self.doc_ids.index(doc_id) if doc_id in self.doc_ids else -1 bm25_score = bm25_scores[idx] / max_bm25_score if idx >= 0 else 0 hybrid_scores[doc_id] = (alpha * vec_score) + ((1 - alpha) * bm25_score) # 5. Rank and return top-k ranked = sorted(hybrid_scores.items(), key=lambda x: x[1], reverse=True) return ranked[:top_k] # Usage engine = HybridSearchEngine(index, documents) results = engine.search("machine learning databases", top_k=10, alpha=0.7)
Namespace & Collection Management
Pinecone Namespaces
from pinecone import Pinecone pc = Pinecone(api_key="YOUR_API_KEY") index = pc.Index("production-search") # 1. Upsert to specific namespace index.upsert( vectors=[ {"id": "doc1", "values": [...], "metadata": {...}} ], namespace="production" ) # 2. Query specific namespace results = index.query( vector=[...], top_k=10, namespace="production", include_metadata=True ) # 3. Get namespace statistics stats = index.describe_index_stats() for namespace, info in stats.namespaces.items(): print(f"Namespace: {namespace}") print(f" Vector count: {info.vector_count}") # 4. Delete all vectors in namespace index.delete(delete_all=True, namespace="test") # 5. Multi-namespace architecture NAMESPACES = { "production": "Live user-facing data", "staging": "Testing before production", "development": "Development and experiments", "archive": "Historical data" } def upsert_with_environment(vectors, environment="production"): """Upsert to appropriate namespace.""" namespace = environment if environment in NAMESPACES else "development" index.upsert(vectors=vectors, namespace=namespace) def search_across_namespaces(query_vector, namespaces=["production", "archive"]): """Search multiple namespaces and combine results.""" all_results = [] for ns in namespaces: results = index.query( vector=query_vector, top_k=10, namespace=ns, include_metadata=True ) for match in results.matches: match.metadata["source_namespace"] = ns all_results.append(match) # Sort by score all_results.sort(key=lambda x: x.score, reverse=True) return all_results[:10]
Weaviate Collections
import weaviate from weaviate.classes.config import Configure client = weaviate.connect_to_local() # 1. Create multiple collections collections_config = [ { "name": "Products", "properties": ["name", "description", "category", "price"] }, { "name": "Users", "properties": ["username", "bio", "interests"] }, { "name": "Reviews", "properties": ["content", "rating", "product_id", "user_id"] } ] for config in collections_config: try: client.collections.create( name=config["name"], vectorizer_config=Configure.Vectorizer.text2vec_openai() ) except Exception as e: print(f"Collection {config['name']} exists: {e}") # 2. Cross-collection references client.collections.create( name="Orders", references=[ weaviate.classes.config.ReferenceProperty( name="hasProduct", target_collection="Products" ), weaviate.classes.config.ReferenceProperty( name="byUser", target_collection="Users" ) ] ) # 3. Multi-collection search def search_all_collections(query: str): """Search across multiple collections.""" results = {} for collection_name in ["Products", "Users", "Reviews"]: collection = client.collections.get(collection_name) response = collection.query.near_text( query=query, limit=5 ) results[collection_name] = response.objects return results # 4. Delete collection client.collections.delete("TestCollection")
Chroma Collections
import chromadb client = chromadb.PersistentClient(path="./chroma_db") # 1. Create multiple collections collections = { "documents": { "metadata": {"description": "Document embeddings"}, "embedding_function": None # Use default }, "images": { "metadata": {"description": "Image embeddings"}, "embedding_function": None }, "code": { "metadata": {"description": "Code snippets"}, "embedding_function": None } } for name, config in collections.items(): collection = client.get_or_create_collection( name=name, metadata=config["metadata"] ) # 2. List all collections all_collections = client.list_collections() for coll in all_collections: print(f"Collection: {coll.name}") print(f" Count: {coll.count()}") print(f" Metadata: {coll.metadata}") # 3. Collection-specific operations docs_collection = client.get_collection("documents") docs_collection.add( documents=["Document text..."], metadatas=[{"type": "article"}], ids=["doc1"] ) # 4. Delete collection client.delete_collection("test_collection") # 5. Multi-collection search def search_all_collections(query: str, n_results: int = 5): """Search across all collections.""" results = {} for collection in client.list_collections(): try: collection_results = collection.query( query_texts=[query], n_results=n_results ) results[collection.name] = collection_results except Exception as e: print(f"Error searching {collection.name}: {e}") return results
Performance & Scaling
Batch Operations Best Practices
from pinecone import Pinecone from typing import List, Dict import asyncio from concurrent.futures import ThreadPoolExecutor import time pc = Pinecone(api_key="YOUR_API_KEY") index = pc.Index("production-search") # 1. Optimal batch size OPTIMAL_BATCH_SIZE = 100 # Pinecone recommendation def batch_upsert(vectors: List[Dict], batch_size: int = OPTIMAL_BATCH_SIZE): """Efficiently upsert vectors in batches.""" total_batches = (len(vectors) + batch_size - 1) // batch_size for i in range(0, len(vectors), batch_size): batch = vectors[i:i + batch_size] index.upsert(vectors=batch, namespace="documents") if (i // batch_size + 1) % 10 == 0: print(f"Processed {i // batch_size + 1}/{total_batches} batches") # 2. Parallel batch upsert def parallel_batch_upsert(vectors: List[Dict], num_workers: int = 4): """Parallel upsert using thread pool.""" batch_size = 100 batches = [ vectors[i:i + batch_size] for i in range(0, len(vectors), batch_size) ] def upsert_batch(batch): try: index.upsert(vectors=batch, namespace="documents") return len(batch) except Exception as e: print(f"Error upserting batch: {e}") return 0 with ThreadPoolExecutor(max_workers=num_workers) as executor: results = list(executor.map(upsert_batch, batches)) print(f"Successfully upserted {sum(results)} vectors") # 3. Rate limiting for API calls class RateLimiter: """Simple rate limiter for API calls.""" def __init__(self, max_calls: int, time_window: float): self.max_calls = max_calls self.time_window = time_window self.calls = [] def wait_if_needed(self): """Wait if rate limit would be exceeded.""" now = time.time() # Remove old calls outside time window self.calls = [call_time for call_time in self.calls if now - call_time < self.time_window] if len(self.calls) >= self.max_calls: sleep_time = self.time_window - (now - self.calls[0]) if sleep_time > 0: time.sleep(sleep_time) self.calls = [] self.calls.append(now) # Usage rate_limiter = RateLimiter(max_calls=100, time_window=60) # 100 calls/minute for batch in batches: rate_limiter.wait_if_needed() index.upsert(vectors=batch) # 4. Bulk delete optimization def bulk_delete_by_filter(filter_dict: Dict, namespace: str = "documents"): """Delete vectors matching filter (more efficient than individual deletes).""" # First, get IDs matching filter results = index.query( vector=[0] * 1536, # Dummy vector top_k=10000, # Max allowed filter=filter_dict, namespace=namespace, include_values=False ) ids_to_delete = [match.id for match in results.matches] # Delete in batches batch_size = 1000 for i in range(0, len(ids_to_delete), batch_size): batch = ids_to_delete[i:i + batch_size] index.delete(ids=batch, namespace=namespace) print(f"Deleted {len(batch)} vectors")
Query Optimization
# 1. Minimize data transfer results = index.query( vector=query_vector, top_k=10, include_values=False, # Don't return vectors if not needed include_metadata=False, # Don't return metadata if not needed namespace="documents" ) # 2. Use appropriate top_k # Smaller top_k = faster queries results_small = index.query(vector=query_vector, top_k=10) # Fast results_large = index.query(vector=query_vector, top_k=1000) # Slower # 3. Filter before vector search when possible # Good: Reduces search space results = index.query( vector=query_vector, top_k=10, filter={"category": "education"}, # Reduces candidates namespace="documents" ) # 4. Batch queries when possible # More efficient than individual queries queries = [embedding1, embedding2, embedding3] results = index.query( queries=queries, top_k=10, namespace="documents" ) # 5. Cache frequent queries from functools import lru_cache import hashlib import json def vector_hash(vector: List[float]) -> str: """Create hash of vector for caching.""" return hashlib.md5(json.dumps(vector).encode()).hexdigest() class CachedIndex: """Wrapper with query caching.""" def __init__(self, index, cache_size: int = 1000): self.index = index self.cache = {} self.cache_size = cache_size def query(self, vector: List[float], top_k: int = 10, **kwargs): """Query with caching.""" cache_key = f"{vector_hash(vector)}_{top_k}_{json.dumps(kwargs)}" if cache_key in self.cache: return self.cache[cache_key] results = self.index.query(vector=vector, top_k=top_k, **kwargs) if len(self.cache) >= self.cache_size: # Remove oldest entry self.cache.pop(next(iter(self.cache))) self.cache[cache_key] = results return results # Usage cached_index = CachedIndex(index) results = cached_index.query(query_vector, top_k=10) # Cached on subsequent calls
Scaling Strategies
# 1. Index sizing for scale def calculate_index_requirements( num_vectors: int, dimension: int, metadata_size_per_vector: int = 1024 # bytes ) -> Dict: """Calculate storage and cost for index.""" # Approximate calculations vector_size = dimension * 4 # 4 bytes per float32 total_vector_storage = num_vectors * vector_size total_metadata_storage = num_vectors * metadata_size_per_vector total_storage = total_vector_storage + total_metadata_storage # Pinecone pricing (approximate) storage_cost_per_gb_month = 0.095 # Serverless pricing total_gb = total_storage / (1024 ** 3) monthly_storage_cost = total_gb * storage_cost_per_gb_month return { "num_vectors": num_vectors, "total_storage_gb": round(total_gb, 2), "monthly_storage_cost_usd": round(monthly_storage_cost, 2), "recommended_pod_type": "s1.x1" if num_vectors > 10_000_000 else "p1.x1" } # Example reqs = calculate_index_requirements( num_vectors=10_000_000, dimension=1536 ) print(f"10M vectors storage: {reqs['total_storage_gb']} GB") print(f"Monthly cost: ${reqs['monthly_storage_cost_usd']}") # 2. Sharding strategy for massive scale def create_sharded_indexes( base_name: str, num_shards: int, dimension: int, metric: str = "cosine" ): """Create multiple indexes for horizontal scaling.""" indexes = [] for shard_id in range(num_shards): index_name = f"{base_name}-shard-{shard_id}" pc.create_index( name=index_name, dimension=dimension, metric=metric, spec=ServerlessSpec(cloud="aws", region="us-east-1") ) indexes.append(index_name) return indexes def route_to_shard(vector_id: str, num_shards: int) -> int: """Determine which shard a vector belongs to.""" return hash(vector_id) % num_shards def query_sharded_indexes(query_vector: List[float], indexes: List, top_k: int = 10): """Query all shards and merge results.""" all_results = [] for index_name in indexes: idx = pc.Index(index_name) results = idx.query( vector=query_vector, top_k=top_k, include_metadata=True ) all_results.extend(results.matches) # Sort by score and return top_k all_results.sort(key=lambda x: x.score, reverse=True) return all_results[:top_k]
Production Best Practices
Error Handling & Retries
import time from typing import Optional, Callable import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class PineconeRetryHandler: """Robust error handling for Pinecone operations.""" def __init__(self, max_retries: int = 3, base_delay: float = 1.0): self.max_retries = max_retries self.base_delay = base_delay def retry_with_backoff( self, operation: Callable, *args, **kwargs ) -> Optional[any]: """Retry operation with exponential backoff.""" for attempt in range(self.max_retries): try: return operation(*args, **kwargs) except Exception as e: if attempt == self.max_retries - 1: logger.error(f"Operation failed after {self.max_retries} attempts: {e}") raise delay = self.base_delay * (2 ** attempt) logger.warning(f"Attempt {attempt + 1} failed: {e}. Retrying in {delay}s...") time.sleep(delay) return None # Usage retry_handler = PineconeRetryHandler(max_retries=3) # Upsert with retry def safe_upsert(vectors, namespace="documents"): return retry_handler.retry_with_backoff( index.upsert, vectors=vectors, namespace=namespace ) # Query with retry def safe_query(vector, top_k=10, **kwargs): return retry_handler.retry_with_backoff( index.query, vector=vector, top_k=top_k, **kwargs ) # Example try: results = safe_query(query_vector, top_k=10, include_metadata=True) except Exception as e: logger.error(f"Query failed permanently: {e}")
Monitoring & Observability
import time from dataclasses import dataclass from typing import Dict, List from datetime import datetime @dataclass class QueryMetrics: """Track query performance metrics.""" query_time: float result_count: int top_score: float timestamp: datetime namespace: str filter_used: bool class VectorDBMonitor: """Monitor vector database operations.""" def __init__(self): self.metrics: List[QueryMetrics] = [] def track_query( self, query_func: Callable, *args, **kwargs ): """Track query execution and metrics.""" start_time = time.time() results = query_func(*args, **kwargs) elapsed = time.time() - start_time metrics = QueryMetrics( query_time=elapsed, result_count=len(results.matches), top_score=results.matches[0].score if results.matches else 0.0, timestamp=datetime.now(), namespace=kwargs.get('namespace', 'default'), filter_used='filter' in kwargs ) self.metrics.append(metrics) # Alert on slow queries if elapsed > 1.0: # 1 second threshold logger.warning(f"Slow query detected: {elapsed:.2f}s") return results def get_stats(self) -> Dict: """Get aggregate statistics.""" if not self.metrics: return {} query_times = [m.query_time for m in self.metrics] return { "total_queries": len(self.metrics), "avg_query_time": sum(query_times) / len(query_times), "p95_query_time": sorted(query_times)[int(len(query_times) * 0.95)], "p99_query_time": sorted(query_times)[int(len(query_times) * 0.99)], "avg_results": sum(m.result_count for m in self.metrics) / len(self.metrics), "filtered_queries_pct": sum(1 for m in self.metrics if m.filter_used) / len(self.metrics) * 100 } # Usage monitor = VectorDBMonitor() # Wrap queries results = monitor.track_query( index.query, vector=query_vector, top_k=10, namespace="documents", filter={"category": "education"} ) # Get statistics stats = monitor.get_stats() print(f"Average query time: {stats['avg_query_time']:.3f}s") print(f"P95 query time: {stats['p95_query_time']:.3f}s")
Data Validation
from typing import List, Dict import numpy as np class VectorValidator: """Validate vectors and metadata before operations.""" def __init__(self, expected_dimension: int): self.expected_dimension = expected_dimension def validate_vector(self, vector: List[float]) -> tuple[bool, str]: """Validate vector format and content.""" # Check type if not isinstance(vector, (list, np.ndarray)): return False, "Vector must be list or numpy array" # Check dimension if len(vector) != self.expected_dimension: return False, f"Expected {self.expected_dimension} dimensions, got {len(vector)}" # Check for NaN or Inf if any(not np.isfinite(v) for v in vector): return False, "Vector contains NaN or Inf values" # Check for zero vector if all(v == 0 for v in vector): return False, "Zero vector not allowed" return True, "Valid" def validate_metadata(self, metadata: Dict) -> tuple[bool, str]: """Validate metadata format.""" # Check type if not isinstance(metadata, dict): return False, "Metadata must be dictionary" # Check metadata size (Pinecone limit: 40KB) metadata_str = str(metadata) if len(metadata_str.encode('utf-8')) > 40_000: return False, "Metadata exceeds 40KB limit" # Check for required fields (customize as needed) required_fields = ["title", "category"] for field in required_fields: if field not in metadata: return False, f"Missing required field: {field}" return True, "Valid" def validate_batch( self, vectors: List[Dict] ) -> tuple[List[Dict], List[str]]: """Validate batch of vectors, return valid ones and errors.""" valid_vectors = [] errors = [] for i, item in enumerate(vectors): # Validate vector is_valid, error = self.validate_vector(item.get('values', [])) if not is_valid: errors.append(f"Vector {i} ({item.get('id', 'unknown')}): {error}") continue # Validate metadata if 'metadata' in item: is_valid, error = self.validate_metadata(item['metadata']) if not is_valid: errors.append(f"Metadata {i} ({item.get('id', 'unknown')}): {error}") continue valid_vectors.append(item) return valid_vectors, errors # Usage validator = VectorValidator(expected_dimension=1536) # Validate single vector is_valid, error = validator.validate_vector(embedding) if not is_valid: print(f"Invalid vector: {error}") # Validate batch valid_vectors, errors = validator.validate_batch(vectors_to_upsert) if errors: for error in errors: logger.error(error) # Upsert only valid vectors if valid_vectors: index.upsert(vectors=valid_vectors)
Backup & Disaster Recovery
import json import gzip from datetime import datetime from pathlib import Path class VectorDBBackup: """Backup and restore vector database data.""" def __init__(self, index, backup_dir: str = "./backups"): self.index = index self.backup_dir = Path(backup_dir) self.backup_dir.mkdir(exist_ok=True) def backup_namespace( self, namespace: str = "documents", compress: bool = True ) -> str: """Backup all vectors in a namespace.""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"backup_{namespace}_{timestamp}.json" if compress: filename += ".gz" filepath = self.backup_dir / filename # Fetch all vectors (in batches) all_vectors = [] batch_size = 100 # Get all IDs first (would need to be tracked separately) # This is a simplified example stats = self.index.describe_index_stats() # For actual implementation, you'd need to track IDs # or use fetch with known IDs # Save to file data = { "namespace": namespace, "timestamp": timestamp, "vector_count": len(all_vectors), "vectors": all_vectors } if compress: with gzip.open(filepath, 'wt', encoding='utf-8') as f: json.dump(data, f) else: with open(filepath, 'w') as f: json.dump(data, f, indent=2) logger.info(f"Backed up {len(all_vectors)} vectors to {filepath}") return str(filepath) def restore_from_backup( self, backup_file: str, target_namespace: str = None ): """Restore vectors from backup file.""" filepath = Path(backup_file) # Load backup if filepath.suffix == '.gz': with gzip.open(filepath, 'rt', encoding='utf-8') as f: data = json.load(f) else: with open(filepath, 'r') as f: data = json.load(f) namespace = target_namespace or data['namespace'] vectors = data['vectors'] # Restore in batches batch_size = 100 for i in range(0, len(vectors), batch_size): batch = vectors[i:i + batch_size] self.index.upsert(vectors=batch, namespace=namespace) logger.info(f"Restored {len(batch)} vectors") logger.info(f"Restored {len(vectors)} vectors to namespace '{namespace}'") # Usage backup_manager = VectorDBBackup(index) # Backup backup_file = backup_manager.backup_namespace("production") # Restore backup_manager.restore_from_backup(backup_file, target_namespace="production-restored")
Cost Optimization
Storage Optimization
# 1. Reduce metadata size # Bad: Storing full content in metadata bad_metadata = { "title": "Long document title", "full_content": "...<entire document>...", # Wastes space "description": "...<long description>...", "extra_field_1": "...", "extra_field_2": "..." } # Good: Store only necessary metadata good_metadata = { "title": "Long document title", "doc_id": "doc-123", # Reference to external store "category": "education", "created_at": "2024-01-15" } # 2. Use selective metadata indexing # Only index fields you'll filter on pc.create_index( name="optimized-index", dimension=1536, metric="cosine", spec=ServerlessSpec( cloud="aws", region="us-east-1", schema={ "fields": { "category": {"filterable": True}, # Need to filter "created_at": {"filterable": True}, # Need to filter "title": {"filterable": False}, # Just for display "description": {"filterable": False} # Just for display } } ) ) # 3. Regular cleanup of unused vectors def cleanup_old_vectors(days_old: int = 90): """Delete vectors older than specified days.""" from datetime import datetime, timedelta cutoff_date = (datetime.now() - timedelta(days=days_old)).isoformat() # Delete by filter index.delete( filter={"created_at": {"$lt": cutoff_date}}, namespace="documents" ) # 4. Compress dimensions for smaller models # text-embedding-3-small: 1536 dimensions # all-MiniLM-L6-v2: 384 dimensions (75% storage reduction) # Trade-off: slightly lower accuracy for significant cost savings
Query Cost Optimization
# 1. Batch queries instead of individual # Bad: Multiple individual queries for query in queries: results = index.query(vector=query, top_k=10) # N API calls # Good: Single batch query results = index.query( queries=query_vectors, # 1 API call top_k=10 ) # 2. Use appropriate top_k # Larger top_k = more expensive results = index.query( vector=query_vector, top_k=10, # Usually sufficient # top_k=1000 # Much more expensive ) # 3. Minimize data transfer results = index.query( vector=query_vector, top_k=10, include_values=False, # Save bandwidth include_metadata=False # Save bandwidth if not needed ) # 4. Use caching for repeated queries from functools import lru_cache @lru_cache(maxsize=1000) def cached_search(query_text: str, top_k: int = 10): """Cache search results for identical queries.""" embedding = generate_embedding(query_text) results = index.query( vector=embedding, top_k=top_k, include_metadata=True ) return results # 5. Choose serverless vs pods appropriately # Serverless: Low/variable traffic (pay per query) # Pods: High consistent traffic (fixed cost) def choose_deployment_type( queries_per_month: int, avg_response_time_requirement: float = 100 # ms ) -> str: """Recommend deployment type based on usage.""" # Rough cost calculations (update with current pricing) serverless_cost_per_query = 0.0001 # Example pod_cost_per_month = 70 # p1.x1 pod serverless_monthly_cost = queries_per_month * serverless_cost_per_query if serverless_monthly_cost < pod_cost_per_month: return "serverless" else: return "pods"
Cost Monitoring
import json from datetime import datetime, timedelta from collections import defaultdict class CostMonitor: """Monitor and estimate vector database costs.""" def __init__(self): self.operations = defaultdict(int) self.pricing = { "serverless_write_units": 0.0000025, # per write unit "serverless_read_units": 0.00000625, # per read unit "serverless_storage_gb": 0.095, # per GB per month "p1_x1_pod": 0.096, # per hour "p2_x1_pod": 0.240, # per hour } def track_operation(self, operation_type: str, units: int = 1): """Track database operations.""" self.operations[operation_type] += units def estimate_monthly_cost( self, deployment_type: str, storage_gb: float = 0, pod_type: str = None ) -> Dict: """Estimate monthly costs.""" costs = {} if deployment_type == "serverless": # Storage cost storage_cost = storage_gb * self.pricing["serverless_storage_gb"] # Operation costs write_cost = ( self.operations["upsert"] * self.pricing["serverless_write_units"] ) read_cost = ( self.operations["query"] * self.pricing["serverless_read_units"] ) costs = { "storage": storage_cost, "writes": write_cost, "reads": read_cost, "total": storage_cost + write_cost + read_cost } elif deployment_type == "pods": # Fixed pod cost hours_per_month = 730 pod_cost = self.pricing.get(f"{pod_type}_pod", 0) * hours_per_month costs = { "pod": pod_cost, "total": pod_cost } return costs def get_cost_report(self) -> str: """Generate cost report.""" report = f"\n{'=' * 50}\n" report += "VECTOR DATABASE COST REPORT\n" report += f"{'=' * 50}\n\n" report += "Operations Summary:\n" for operation, count in self.operations.items(): report += f" {operation}: {count:,}\n" report += f"\n{'=' * 50}\n" return report # Usage cost_monitor = CostMonitor() # Track operations def monitored_upsert(vectors, **kwargs): cost_monitor.track_operation("upsert", len(vectors)) return index.upsert(vectors=vectors, **kwargs) def monitored_query(vector, **kwargs): cost_monitor.track_operation("query", 1) return index.query(vector=vector, **kwargs) # Get cost estimate monthly_cost = cost_monitor.estimate_monthly_cost( deployment_type="serverless", storage_gb=10.5 ) print(f"Estimated monthly cost: ${monthly_cost['total']:.2f}") print(cost_monitor.get_cost_report())
Summary
This comprehensive guide covers all aspects of vector database management across Pinecone, Weaviate, and Chroma. Key takeaways:
- Choose the right database: Pinecone for production scale, Weaviate for knowledge graphs, Chroma for local development
- Optimize embeddings: Balance dimension size with accuracy and cost
- Use metadata filtering: Combine vector similarity with structured filtering for powerful search
- Implement hybrid search: Combine dense and sparse vectors for best results
- Scale efficiently: Use batching, caching, and appropriate index configurations
- Monitor and optimize costs: Track usage and choose the right deployment type
For more information:
- Pinecone Documentation: https://docs.pinecone.io
- Weaviate Documentation: https://weaviate.io/developers/weaviate
- Chroma Documentation: https://docs.trychroma.com

manutej
luxor-claude-marketplace
Download Skill Files
View Installation GuideDownload the complete skill directory including SKILL.md and all related files