agentdb-advanced-features
"Master advanced AgentDB features including QUIC synchronization, multi-database management, custom distance metrics, hybrid search, and distributed systems integration. Use when building distributed AI systems, multi-agent coordination, or advanced vector search applications."
About agentdb-advanced-features
agentdb-advanced-features is a Claude AI skill developed by ruvnet. "Master advanced AgentDB features including QUIC synchronization, multi-database management, custom distance metrics, hybrid search, and distributed systems integration. Use when building distributed AI systems, multi-agent coordination, or advanced vector search applications." This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.
Why use agentdb-advanced-features? With 0 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.
| name | AgentDB Advanced Features |
| description | Master advanced AgentDB features including QUIC synchronization, multi-database management, custom distance metrics, hybrid search, and distributed systems integration. Use when building distributed AI systems, multi-agent coordination, or advanced vector search applications. |
AgentDB Advanced Features
What This Skill Does
Covers advanced AgentDB capabilities for distributed systems, multi-database coordination, custom distance metrics, hybrid search (vector + metadata), QUIC synchronization, and production deployment patterns. Enables building sophisticated AI systems with sub-millisecond cross-node communication and advanced search capabilities.
Performance: <1ms QUIC sync, hybrid search with filters, custom distance metrics.
Prerequisites
- Node.js 18+
- AgentDB v1.0.7+ (via agentic-flow)
- Understanding of distributed systems (for QUIC sync)
- Vector search fundamentals
QUIC Synchronization
What is QUIC Sync?
QUIC (Quick UDP Internet Connections) enables sub-millisecond latency synchronization between AgentDB instances across network boundaries with automatic retry, multiplexing, and encryption.
Benefits:
- <1ms latency between nodes
- Multiplexed streams (multiple operations simultaneously)
- Built-in encryption (TLS 1.3)
- Automatic retry and recovery
- Event-based broadcasting
Enable QUIC Sync
import { createAgentDBAdapter } from 'agentic-flow/reasoningbank'; // Initialize with QUIC synchronization const adapter = await createAgentDBAdapter({ dbPath: '.agentdb/distributed.db', enableQUICSync: true, syncPort: 4433, syncPeers: [ '192.168.1.10:4433', '192.168.1.11:4433', '192.168.1.12:4433', ], }); // Patterns automatically sync across all peers await adapter.insertPattern({ // ... pattern data }); // Available on all peers within ~1ms
QUIC Configuration
const adapter = await createAgentDBAdapter({ enableQUICSync: true, syncPort: 4433, // QUIC server port syncPeers: ['host1:4433'], // Peer addresses syncInterval: 1000, // Sync interval (ms) syncBatchSize: 100, // Patterns per batch maxRetries: 3, // Retry failed syncs compression: true, // Enable compression });
Multi-Node Deployment
# Node 1 (192.168.1.10) AGENTDB_QUIC_SYNC=true \ AGENTDB_QUIC_PORT=4433 \ AGENTDB_QUIC_PEERS=192.168.1.11:4433,192.168.1.12:4433 \ node server.js # Node 2 (192.168.1.11) AGENTDB_QUIC_SYNC=true \ AGENTDB_QUIC_PORT=4433 \ AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.12:4433 \ node server.js # Node 3 (192.168.1.12) AGENTDB_QUIC_SYNC=true \ AGENTDB_QUIC_PORT=4433 \ AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.11:4433 \ node server.js
Distance Metrics
Cosine Similarity (Default)
Best for normalized vectors, semantic similarity:
# CLI npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m cosine # API const result = await adapter.retrieveWithReasoning(queryEmbedding, { metric: 'cosine', k: 10, });
Use Cases:
- Text embeddings (BERT, GPT, etc.)
- Semantic search
- Document similarity
- Most general-purpose applications
Formula: cos(θ) = (A · B) / (||A|| × ||B||)
Range: [-1, 1] (1 = identical, -1 = opposite)
Euclidean Distance (L2)
Best for spatial data, geometric similarity:
# CLI npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m euclidean # API const result = await adapter.retrieveWithReasoning(queryEmbedding, { metric: 'euclidean', k: 10, });
Use Cases:
- Image embeddings
- Spatial data
- Computer vision
- When vector magnitude matters
Formula: d = √(Σ(ai - bi)²)
Range: [0, ∞] (0 = identical, ∞ = very different)
Dot Product
Best for pre-normalized vectors, fast computation:
# CLI npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m dot # API const result = await adapter.retrieveWithReasoning(queryEmbedding, { metric: 'dot', k: 10, });
Use Cases:
- Pre-normalized embeddings
- Fast similarity computation
- When vectors are already unit-length
Formula: dot = Σ(ai × bi)
Range: [-∞, ∞] (higher = more similar)
Custom Distance Metrics
// Implement custom distance function function customDistance(vec1: number[], vec2: number[]): number { // Weighted Euclidean distance const weights = [1.0, 2.0, 1.5, ...]; let sum = 0; for (let i = 0; i < vec1.length; i++) { sum += weights[i] * Math.pow(vec1[i] - vec2[i], 2); } return Math.sqrt(sum); } // Use in search (requires custom implementation)
Hybrid Search (Vector + Metadata)
Basic Hybrid Search
Combine vector similarity with metadata filtering:
// Store documents with metadata await adapter.insertPattern({ id: '', type: 'document', domain: 'research-papers', pattern_data: JSON.stringify({ embedding: documentEmbedding, text: documentText, metadata: { author: 'Jane Smith', year: 2025, category: 'machine-learning', citations: 150, } }), confidence: 1.0, usage_count: 0, success_count: 0, created_at: Date.now(), last_used: Date.now(), }); // Hybrid search: vector similarity + metadata filters const result = await adapter.retrieveWithReasoning(queryEmbedding, { domain: 'research-papers', k: 20, filters: { year: { $gte: 2023 }, // Published 2023 or later category: 'machine-learning', // ML papers only citations: { $gte: 50 }, // Highly cited }, });
Advanced Filtering
// Complex metadata queries const result = await adapter.retrieveWithReasoning(queryEmbedding, { domain: 'products', k: 50, filters: { price: { $gte: 10, $lte: 100 }, // Price range category: { $in: ['electronics', 'gadgets'] }, // Multiple categories rating: { $gte: 4.0 }, // High rated inStock: true, // Available tags: { $contains: 'wireless' }, // Has tag }, });
Weighted Hybrid Search
Combine vector and metadata scores:
const result = await adapter.retrieveWithReasoning(queryEmbedding, { domain: 'content', k: 20, hybridWeights: { vectorSimilarity: 0.7, // 70% weight on semantic similarity metadataScore: 0.3, // 30% weight on metadata match }, filters: { category: 'technology', recency: { $gte: Date.now() - 30 * 24 * 3600000 }, // Last 30 days }, });
Multi-Database Management
Multiple Databases
// Separate databases for different domains const knowledgeDB = await createAgentDBAdapter({ dbPath: '.agentdb/knowledge.db', }); const conversationDB = await createAgentDBAdapter({ dbPath: '.agentdb/conversations.db', }); const codeDB = await createAgentDBAdapter({ dbPath: '.agentdb/code.db', }); // Use appropriate database for each task await knowledgeDB.insertPattern({ /* knowledge */ }); await conversationDB.insertPattern({ /* conversation */ }); await codeDB.insertPattern({ /* code */ });
Database Sharding
// Shard by domain for horizontal scaling const shards = { 'domain-a': await createAgentDBAdapter({ dbPath: '.agentdb/shard-a.db' }), 'domain-b': await createAgentDBAdapter({ dbPath: '.agentdb/shard-b.db' }), 'domain-c': await createAgentDBAdapter({ dbPath: '.agentdb/shard-c.db' }), }; // Route queries to appropriate shard function getDBForDomain(domain: string) { const shardKey = domain.split('-')[0]; // Extract shard key return shards[shardKey] || shards['domain-a']; } // Insert to correct shard const db = getDBForDomain('domain-a-task'); await db.insertPattern({ /* ... */ });
MMR (Maximal Marginal Relevance)
Retrieve diverse results to avoid redundancy:
// Without MMR: Similar results may be redundant const standardResults = await adapter.retrieveWithReasoning(queryEmbedding, { k: 10, useMMR: false, }); // With MMR: Diverse, non-redundant results const diverseResults = await adapter.retrieveWithReasoning(queryEmbedding, { k: 10, useMMR: true, mmrLambda: 0.5, // Balance relevance (0) vs diversity (1) });
MMR Parameters:
mmrLambda = 0: Maximum relevance (may be redundant)mmrLambda = 0.5: Balanced (default)mmrLambda = 1: Maximum diversity (may be less relevant)
Use Cases:
- Search result diversification
- Recommendation systems
- Avoiding echo chambers
- Exploratory search
Context Synthesis
Generate rich context from multiple memories:
const result = await adapter.retrieveWithReasoning(queryEmbedding, { domain: 'problem-solving', k: 10, synthesizeContext: true, // Enable context synthesis }); // ContextSynthesizer creates coherent narrative console.log('Synthesized Context:', result.context); // "Based on 10 similar problem-solving attempts, the most effective // approach involves: 1) analyzing root cause, 2) brainstorming solutions, // 3) evaluating trade-offs, 4) implementing incrementally. Success rate: 85%" console.log('Patterns:', result.patterns); // Extracted common patterns across memories
Production Patterns
Connection Pooling
// Singleton pattern for shared adapter class AgentDBPool { private static instance: AgentDBAdapter; static async getInstance() { if (!this.instance) { this.instance = await createAgentDBAdapter({ dbPath: '.agentdb/production.db', quantizationType: 'scalar', cacheSize: 2000, }); } return this.instance; } } // Use in application const db = await AgentDBPool.getInstance(); const results = await db.retrieveWithReasoning(queryEmbedding, { k: 10 });
Error Handling
async function safeRetrieve(queryEmbedding: number[], options: any) { try { const result = await adapter.retrieveWithReasoning(queryEmbedding, options); return result; } catch (error) { if (error.code === 'DIMENSION_MISMATCH') { console.error('Query embedding dimension mismatch'); // Handle dimension error } else if (error.code === 'DATABASE_LOCKED') { // Retry with exponential backoff await new Promise(resolve => setTimeout(resolve, 100)); return safeRetrieve(queryEmbedding, options); } throw error; } }
Monitoring and Logging
// Performance monitoring const startTime = Date.now(); const result = await adapter.retrieveWithReasoning(queryEmbedding, { k: 10 }); const latency = Date.now() - startTime; if (latency > 100) { console.warn('Slow query detected:', latency, 'ms'); } // Log statistics const stats = await adapter.getStats(); console.log('Database Stats:', { totalPatterns: stats.totalPatterns, dbSize: stats.dbSize, cacheHitRate: stats.cacheHitRate, avgSearchLatency: stats.avgSearchLatency, });
CLI Advanced Operations
Database Import/Export
# Export with compression npx agentdb@latest export ./vectors.db ./backup.json.gz --compress # Import from backup npx agentdb@latest import ./backup.json.gz --decompress # Merge databases npx agentdb@latest merge ./db1.sqlite ./db2.sqlite ./merged.sqlite
Database Optimization
# Vacuum database (reclaim space) sqlite3 .agentdb/vectors.db "VACUUM;" # Analyze for query optimization sqlite3 .agentdb/vectors.db "ANALYZE;" # Rebuild indices npx agentdb@latest reindex ./vectors.db
Environment Variables
# AgentDB configuration AGENTDB_PATH=.agentdb/reasoningbank.db AGENTDB_ENABLED=true # Performance tuning AGENTDB_QUANTIZATION=binary # binary|scalar|product|none AGENTDB_CACHE_SIZE=2000 AGENTDB_HNSW_M=16 AGENTDB_HNSW_EF=100 # Learning plugins AGENTDB_LEARNING=true # Reasoning agents AGENTDB_REASONING=true # QUIC synchronization AGENTDB_QUIC_SYNC=true AGENTDB_QUIC_PORT=4433 AGENTDB_QUIC_PEERS=host1:4433,host2:4433
Troubleshooting
Issue: QUIC sync not working
# Check firewall allows UDP port 4433 sudo ufw allow 4433/udp # Verify peers are reachable ping host1 # Check QUIC logs DEBUG=agentdb:quic node server.js
Issue: Hybrid search returns no results
// Relax filters const result = await adapter.retrieveWithReasoning(queryEmbedding, { k: 100, // Increase k filters: { // Remove or relax filters }, });
Issue: Memory consolidation too aggressive
// Disable automatic optimization const result = await adapter.retrieveWithReasoning(queryEmbedding, { optimizeMemory: false, // Disable auto-consolidation k: 10, });
Learn More
- QUIC Protocol: docs/quic-synchronization.pdf
- Hybrid Search: docs/hybrid-search-guide.md
- GitHub: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentdb
- Website: https://agentdb.ruv.io
Category: Advanced / Distributed Systems Difficulty: Advanced Estimated Time: 45-60 minutes

ruvnet
claude-flow
Download Skill Files
View Installation GuideDownload the complete skill directory including SKILL.md and all related files