moai-domain-database
Database design, schema optimization, indexing strategies, and migration management.
About moai-domain-database
moai-domain-database is a Claude AI skill developed by modu-ai. Database design, schema optimization, indexing strategies, and migration management. This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.
Why use moai-domain-database? With 158 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.
| name | moai-domain-database |
| description | Database specialist covering PostgreSQL, MongoDB, Redis, and advanced data patterns for modern applications |
| version | 1.0.0 |
| category | domain |
| allowed-tools | Read, Write, Edit, Bash, Grep, Glob |
| tags | ["database","postgresql","mongodb","redis","data-patterns","performance"] |
| updated | "2025-12-06T00:00:00.000Z" |
| status | active |
| author | MoAI-ADK Team |
Database Domain Specialist
Quick Reference (30 seconds)
Enterprise Database Expertise - Comprehensive database patterns and implementations covering PostgreSQL, MongoDB, Redis, and advanced data management for scalable modern applications.
Core Capabilities:
- PostgreSQL: Advanced relational patterns, optimization, and scaling
- MongoDB: Document modeling, aggregation, and NoSQL performance tuning
- Redis: In-memory caching, real-time analytics, and distributed systems
- Multi-Database: Hybrid architectures and data integration patterns
- Performance: Query optimization, indexing strategies, and scaling
- Operations: Connection management, migrations, and monitoring
When to Use:
- Designing database schemas and data models
- Implementing caching strategies and performance optimization
- Building scalable data architectures
- Working with multi-database systems
- Optimizing database queries and performance
Implementation Guide (5 minutes)
Quick Start Workflow
Database Stack Initialization:
from moai_domain_database import DatabaseManager # Initialize multi-database stack db_manager = DatabaseManager() # Configure PostgreSQL for relational data postgresql = db_manager.setup_postgresql( connection_string="postgresql://...", connection_pool_size=20, enable_query_logging=True ) # Configure MongoDB for document storage mongodb = db_manager.setup_mongodb( connection_string="mongodb://...", database_name="app_data", enable_sharding=True ) # Configure Redis for caching and real-time features redis = db_manager.setup_redis( connection_string="redis://...", max_connections=50, enable_clustering=True ) # Use unified database interface user_data = db_manager.get_user_with_profile(user_id) analytics = db_manager.get_user_analytics(user_id, time_range="30d")
Single Database Operations:
# PostgreSQL schema migration moai db:migrate --database postgresql --migration-file schema_v2.sql # MongoDB aggregation pipeline moai db:aggregate --collection users --pipeline analytics_pipeline.json # Redis cache warming moai db:cache:warm --pattern "user:*" --ttl 3600
Core Components
- PostgreSQL (
modules/postgresql.md)
- Advanced schema design and constraints
- Complex query optimization and indexing
- Window functions and CTEs
- Partitioning and materialized views
- Connection pooling and performance tuning
- MongoDB (
modules/mongodb.md)
- Document modeling and schema design
- Aggregation pipelines for analytics
- Indexing strategies and performance
- Sharding and scaling patterns
- Data consistency and validation
- Redis (
modules/redis.md)
- Multi-layer caching strategies
- Real-time analytics and counting
- Distributed locking and coordination
- Pub/sub messaging and streams
- Advanced data structures (HyperLogLog, Geo)
Advanced Patterns (10+ minutes)
Multi-Database Architecture
Polyglot Persistence Pattern:
class DataRouter: def __init__(self): self.postgresql = PostgreSQLConnection() self.mongodb = MongoDBConnection() self.redis = RedisConnection() def get_user_profile(self, user_id): # Get structured user data from PostgreSQL user = self.postgresql.get_user(user_id) # Get flexible profile data from MongoDB profile = self.mongodb.get_user_profile(user_id) # Get real-time status from Redis status = self.redis.get_user_status(user_id) return self.merge_user_data(user, profile, status) def update_user_data(self, user_id, data): # Route different data types to appropriate databases if 'structured_data' in data: self.postgresql.update_user(user_id, data['structured_data']) if 'profile_data' in data: self.mongodb.update_user_profile(user_id, data['profile_data']) if 'real_time_data' in data: self.redis.set_user_status(user_id, data['real_time_data']) # Invalidate cache across databases self.invalidate_user_cache(user_id)
Data Synchronization:
class DataSyncManager: def sync_user_data(self, user_id): # Sync from PostgreSQL to MongoDB for search pg_user = self.postgresql.get_user(user_id) search_document = self.create_search_document(pg_user) self.mongodb.upsert_user_search(user_id, search_document) # Update cache in Redis cache_data = self.create_cache_document(pg_user) self.redis.set_user_cache(user_id, cache_data, ttl=3600)
Performance Optimization
Query Performance Analysis:
# PostgreSQL query optimization def analyze_query_performance(query): explain_result = postgresql.execute(f"EXPLAIN (ANALYZE, BUFFERS) {query}") return QueryAnalyzer(explain_result).get_optimization_suggestions() # MongoDB aggregation optimization def optimize_aggregation_pipeline(pipeline): optimizer = AggregationOptimizer() return optimizer.optimize_pipeline(pipeline) # Redis performance monitoring def monitor_redis_performance(): metrics = redis.info() return PerformanceAnalyzer(metrics).get_recommendations()
Scaling Strategies:
# Read replicas for PostgreSQL read_replicas = postgresql.setup_read_replicas([ "postgresql://replica1...", "postgresql://replica2..." ]) # Sharding for MongoDB mongodb.setup_sharding( shard_key="user_id", num_shards=4 ) # Redis clustering redis.setup_cluster([ "redis://node1:7000", "redis://node2:7000", "redis://node3:7000" ])
Works Well With
Complementary Skills:
moai-domain-backend- API integration and business logicmoai-foundation-core- Database migration and schema managementmoai-workflow-project- Database project setup and configurationmoai-platform-supabase- Supabase database integration patternsmoai-platform-neon- Neon database integration patternsmoai-platform-firestore- Firestore database integration patterns
Technology Integration:
- ORMs and ODMs (SQLAlchemy, Mongoose, TypeORM)
- Connection pooling (PgBouncer, connection pools)
- Migration tools (Alembic, Flyway)
- Monitoring (pg_stat_statements, MongoDB Atlas)
- Cache invalidation and synchronization
Usage Examples
Database Operations
# PostgreSQL advanced queries users = postgresql.query( "SELECT * FROM users WHERE created_at > %s ORDER BY activity_score DESC LIMIT 100", [datetime.now() - timedelta(days=30)] ) # MongoDB analytics analytics = mongodb.aggregate('events', [ {"$match": {"timestamp": {"$gte": start_date}}}, {"$group": {"_id": "$type", "count": {"$sum": 1}}}, {"$sort": {"count": -1}} ]) # Redis caching operations async def get_user_data(user_id): cache_key = f"user:{user_id}" data = await redis.get(cache_key) if not data: data = fetch_from_database(user_id) await redis.setex(cache_key, 3600, json.dumps(data)) return json.loads(data)
Multi-Database Transactions
async def create_user_with_profile(user_data, profile_data): try: # Start transaction across databases async with transaction_manager(): # Create user in PostgreSQL user_id = await postgresql.insert_user(user_data) # Create profile in MongoDB await mongodb.insert_user_profile(user_id, profile_data) # Set initial cache in Redis await redis.set_user_cache(user_id, { "id": user_id, "status": "active", "created_at": datetime.now().isoformat() }) return user_id except Exception as e: # Automatic rollback across databases logger.error(f"User creation failed: {e}") raise
Technology Stack
Relational Database:
- PostgreSQL 14+ (primary)
- MySQL 8.0+ (alternative)
- Connection pooling (PgBouncer, SQLAlchemy)
NoSQL Database:
- MongoDB 6.0+ (primary)
- Document modeling and validation
- Aggregation framework
- Sharding and replication
In-Memory Database:
- Redis 7.0+ (primary)
- Redis Stack for advanced features
- Clustering and high availability
- Advanced data structures
Supporting Tools:
- Migration tools (Alembic, Flyway)
- Monitoring (Prometheus, Grafana)
- ORMs/ODMs (SQLAlchemy, Mongoose)
- Connection management
Performance Features:
- Query optimization and analysis
- Index management and strategies
- Caching layers and invalidation
- Load balancing and failover
For detailed implementation patterns and database-specific optimizations, see the modules/ directory.

modu-ai
moai-adk
Download Skill Files
View Installation GuideDownload the complete skill directory including SKILL.md and all related files