databases

Work with MongoDB (document database, BSON documents, aggregation pipelines, Atlas cloud) and PostgreSQL (relational database, SQL queries, psql CLI, pgAdmin). Use when designing database schemas, writing queries and aggregations, optimizing indexes for performance, performing database migrations, configuring replication and sharding, implementing backup and restore strategies, managing database users and permissions, analyzing query performance, or administering production databases.

About databases

databases is a Claude AI skill developed by mrgoonie. Work with MongoDB (document database, BSON documents, aggregation pipelines, Atlas cloud) and PostgreSQL (relational database, SQL queries, psql CLI, pgAdmin). Use when designing database schemas, writing queries and aggregations, optimizing indexes for performance, performing database migrations, configuring replication and sharding, implementing backup and restore strategies, managing database users and permissions, analyzing query performance, or administering production databases. This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.

646Stars
100Forks
2025-11-10

Why use databases? With 646 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.

namedatabases
descriptionWork with MongoDB (document database, BSON documents, aggregation pipelines, Atlas cloud) and PostgreSQL (relational database, SQL queries, psql CLI, pgAdmin). Use when designing database schemas, writing queries and aggregations, optimizing indexes for performance, performing database migrations, configuring replication and sharding, implementing backup and restore strategies, managing database users and permissions, analyzing query performance, or administering production databases.
licenseMIT

Databases Skill

Unified guide for working with MongoDB (document-oriented) and PostgreSQL (relational) databases. Choose the right database for your use case and master both systems.

When to Use This Skill

Use when:

  • Designing database schemas and data models
  • Writing queries (SQL or MongoDB query language)
  • Building aggregation pipelines or complex joins
  • Optimizing indexes and query performance
  • Implementing database migrations
  • Setting up replication, sharding, or clustering
  • Configuring backups and disaster recovery
  • Managing database users and permissions
  • Analyzing slow queries and performance issues
  • Administering production database deployments

Database Selection Guide

Choose MongoDB When:

  • Schema flexibility: frequent structure changes, heterogeneous data
  • Document-centric: natural JSON/BSON data model
  • Horizontal scaling: need to shard across multiple servers
  • High write throughput: IoT, logging, real-time analytics
  • Nested/hierarchical data: embedded documents preferred
  • Rapid prototyping: schema evolution without migrations

Best for: Content management, catalogs, IoT time series, real-time analytics, mobile apps, user profiles

Choose PostgreSQL When:

  • Strong consistency: ACID transactions critical
  • Complex relationships: many-to-many joins, referential integrity
  • SQL requirement: team expertise, reporting tools, BI systems
  • Data integrity: strict schema validation, constraints
  • Mature ecosystem: extensive tooling, extensions
  • Complex queries: window functions, CTEs, analytical workloads

Best for: Financial systems, e-commerce transactions, ERP, CRM, data warehousing, analytics

Both Support:

  • JSON/JSONB storage and querying
  • Full-text search capabilities
  • Geospatial queries and indexing
  • Replication and high availability
  • ACID transactions (MongoDB 4.0+)
  • Strong security features

Quick Start

MongoDB Setup

# Atlas (Cloud) - Recommended # 1. Sign up at mongodb.com/atlas # 2. Create M0 free cluster # 3. Get connection string # Connection mongodb+srv://user:pass@cluster.mongodb.net/db # Shell mongosh "mongodb+srv://cluster.mongodb.net/mydb" # Basic operations db.users.insertOne({ name: "Alice", age: 30 }) db.users.find({ age: { $gte: 18 } }) db.users.updateOne({ name: "Alice" }, { $set: { age: 31 } }) db.users.deleteOne({ name: "Alice" })

PostgreSQL Setup

# Ubuntu/Debian sudo apt-get install postgresql postgresql-contrib # Start service sudo systemctl start postgresql # Connect psql -U postgres -d mydb # Basic operations CREATE TABLE users (id SERIAL PRIMARY KEY, name TEXT, age INT); INSERT INTO users (name, age) VALUES ('Alice', 30); SELECT * FROM users WHERE age >= 18; UPDATE users SET age = 31 WHERE name = 'Alice'; DELETE FROM users WHERE name = 'Alice';

Common Operations

Create/Insert

// MongoDB db.users.insertOne({ name: "Bob", email: "bob@example.com" }) db.users.insertMany([{ name: "Alice" }, { name: "Charlie" }])
-- PostgreSQL INSERT INTO users (name, email) VALUES ('Bob', 'bob@example.com'); INSERT INTO users (name, email) VALUES ('Alice', NULL), ('Charlie', NULL);

Read/Query

// MongoDB db.users.find({ age: { $gte: 18 } }) db.users.findOne({ email: "bob@example.com" })
-- PostgreSQL SELECT * FROM users WHERE age >= 18; SELECT * FROM users WHERE email = 'bob@example.com' LIMIT 1;

Update

// MongoDB db.users.updateOne({ name: "Bob" }, { $set: { age: 25 } }) db.users.updateMany({ status: "pending" }, { $set: { status: "active" } })
-- PostgreSQL UPDATE users SET age = 25 WHERE name = 'Bob'; UPDATE users SET status = 'active' WHERE status = 'pending';

Delete

// MongoDB db.users.deleteOne({ name: "Bob" }) db.users.deleteMany({ status: "deleted" })
-- PostgreSQL DELETE FROM users WHERE name = 'Bob'; DELETE FROM users WHERE status = 'deleted';

Indexing

// MongoDB db.users.createIndex({ email: 1 }) db.users.createIndex({ status: 1, createdAt: -1 })
-- PostgreSQL CREATE INDEX idx_users_email ON users(email); CREATE INDEX idx_users_status_created ON users(status, created_at DESC);

Reference Navigation

MongoDB References

PostgreSQL References

Python Utilities

Database utility scripts in scripts/:

  • db_migrate.py - Generate and apply migrations for both databases
  • db_backup.py - Backup and restore MongoDB and PostgreSQL
  • db_performance_check.py - Analyze slow queries and recommend indexes
# Generate migration python scripts/db_migrate.py --db mongodb --generate "add_user_index" # Run backup python scripts/db_backup.py --db postgres --output /backups/ # Check performance python scripts/db_performance_check.py --db mongodb --threshold 100ms

Key Differences Summary

FeatureMongoDBPostgreSQL
Data ModelDocument (JSON/BSON)Relational (Tables/Rows)
SchemaFlexible, dynamicStrict, predefined
Query LanguageMongoDB Query LanguageSQL
Joins$lookup (limited)Native, optimized
TransactionsMulti-document (4.0+)Native ACID
ScalingHorizontal (sharding)Vertical (primary), Horizontal (extensions)
IndexesSingle, compound, text, geo, etcB-tree, hash, GiST, GIN, etc

Best Practices

MongoDB:

  • Use embedded documents for 1-to-few relationships
  • Reference documents for 1-to-many or many-to-many
  • Index frequently queried fields
  • Use aggregation pipeline for complex transformations
  • Enable authentication and TLS in production
  • Use Atlas for managed hosting

PostgreSQL:

  • Normalize schema to 3NF, denormalize for performance
  • Use foreign keys for referential integrity
  • Index foreign keys and frequently filtered columns
  • Use EXPLAIN ANALYZE to optimize queries
  • Regular VACUUM and ANALYZE maintenance
  • Connection pooling (pgBouncer) for web apps

Resources

mrgoonie

mrgoonie

claudekit-skills

View on GitHub

Download Skill Files

View Installation Guide

Download the complete skill directory including SKILL.md and all related files