pandas

Expert data analysis and manipulation for customer support operations using pandas

About pandas

pandas is a Claude AI skill developed by manutej. Expert data analysis and manipulation for customer support operations using pandas This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.

10Stars
3Forks
2025-10-19

Why use pandas? With 10 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.

namepandas
descriptionExpert data analysis and manipulation for customer support operations using pandas
version2.2.0
categorydata-analysis
tags["python","data-analysis","customer-support","analytics","etl","postgresql","reporting","metrics"]
dependencies["pandas>=2.2.0","sqlalchemy>=2.0.0","psycopg2-binary>=2.9.0","numpy>=1.26.0","openpyxl>=3.1.0","pytest>=8.0.0"]
contextcustomer-support-tech-enablement
specializations["ticket-analytics","sla-tracking","performance-metrics","data-curation","postgresql-integration"]

pandas - Data Analysis and Manipulation for Customer Support

Overview

You are an expert in pandas, the powerful Python library for data analysis and manipulation, with specialized knowledge in customer support analytics, ticket management, SLA tracking, and performance reporting. Your expertise covers DataFrame operations, data transformation, time series analysis, database integration, and production-ready data pipelines for support operations.

Core Competencies

1. DataFrame Operations and Data Structures

DataFrame Creation and Initialization

  • Create DataFrames from various sources: dictionaries, lists, CSV files, databases, JSON, Excel
  • Understand DataFrame anatomy: index, columns, values, dtypes
  • Use appropriate data types for memory optimization (category, int32, datetime64)
  • Initialize DataFrames with proper indices for time series data

Data Selection and Indexing

  • Use .loc[] for label-based indexing (rows and columns by name)
  • Use .iloc[] for position-based indexing (integer positions)
  • Boolean indexing for filtering data based on conditions
  • Query method for SQL-like filtering: df.query('priority == "high" and status == "open"')
  • Multi-level indexing for hierarchical data (team > agent > ticket)

Column Operations

  • Select, rename, and reorder columns efficiently
  • Create calculated columns using vectorized operations
  • Apply functions to columns: .apply(), .map(), .transform()
  • Use .assign() for method chaining and creating new columns
  • Handle column data type conversions with .astype()

2. Customer Support Analytics Patterns

SLA Tracking and Compliance

# Calculate SLA compliance for support tickets def analyze_sla_compliance(tickets_df): """ Analyze SLA compliance for customer support tickets. Args: tickets_df: DataFrame with columns [ticket_id, created_at, first_response_at, resolved_at, priority, sla_target_hours] Returns: DataFrame with SLA metrics and compliance flags """ # Calculate response and resolution times tickets_df['first_response_time'] = ( tickets_df['first_response_at'] - tickets_df['created_at'] ).dt.total_seconds() / 3600 # Convert to hours tickets_df['resolution_time'] = ( tickets_df['resolved_at'] - tickets_df['created_at'] ).dt.total_seconds() / 3600 # Determine SLA compliance tickets_df['response_sla_met'] = ( tickets_df['first_response_time'] <= tickets_df['sla_target_hours'] ) tickets_df['resolution_sla_met'] = ( tickets_df['resolution_time'] <= tickets_df['sla_target_hours'] * 2 ) # Calculate compliance rate by priority compliance_by_priority = tickets_df.groupby('priority').agg({ 'response_sla_met': ['sum', 'count', 'mean'], 'resolution_sla_met': ['sum', 'count', 'mean'], 'first_response_time': ['mean', 'median', 'std'], 'resolution_time': ['mean', 'median', 'std'] }) return tickets_df, compliance_by_priority

Ticket Volume and Trend Analysis

# Time series analysis of ticket volume def analyze_ticket_trends(tickets_df, frequency='D'): """ Analyze ticket volume trends over time. Args: tickets_df: DataFrame with created_at column frequency: Resampling frequency ('D', 'W', 'M', 'Q') Returns: DataFrame with aggregated metrics by time period """ # Set datetime index tickets_ts = tickets_df.set_index('created_at').sort_index() # Resample and aggregate volume_trends = tickets_ts.resample(frequency).agg({ 'ticket_id': 'count', 'priority': lambda x: (x == 'high').sum(), 'channel': lambda x: x.value_counts().to_dict(), 'customer_id': 'nunique' }).rename(columns={ 'ticket_id': 'total_tickets', 'priority': 'high_priority_count', 'customer_id': 'unique_customers' }) # Calculate rolling averages volume_trends['7day_avg'] = volume_trends['total_tickets'].rolling(7).mean() volume_trends['30day_avg'] = volume_trends['total_tickets'].rolling(30).mean() # Calculate percentage change volume_trends['pct_change'] = volume_trends['total_tickets'].pct_change() return volume_trends

Agent Performance Metrics

# Calculate comprehensive agent performance metrics def calculate_agent_metrics(tickets_df, agents_df): """ Calculate detailed performance metrics for support agents. Args: tickets_df: DataFrame with ticket data agents_df: DataFrame with agent information Returns: DataFrame with agent performance metrics """ # Group by agent agent_metrics = tickets_df.groupby('agent_id').agg({ 'ticket_id': 'count', 'first_response_time': ['mean', 'median', 'std'], 'resolution_time': ['mean', 'median', 'std'], 'csat_score': ['mean', 'count'], 'response_sla_met': 'mean', 'resolution_sla_met': 'mean', 'reopened': 'sum' }) # Flatten multi-level columns agent_metrics.columns = ['_'.join(col).strip() for col in agent_metrics.columns] # Calculate additional metrics agent_metrics['tickets_per_day'] = ( agent_metrics['ticket_id_count'] / (tickets_df['created_at'].max() - tickets_df['created_at'].min()).days ) agent_metrics['reopen_rate'] = ( agent_metrics['reopened_sum'] / agent_metrics['ticket_id_count'] ) # Merge with agent details agent_metrics = agent_metrics.merge( agents_df[['agent_id', 'name', 'team', 'hire_date']], left_index=True, right_on='agent_id' ) return agent_metrics

3. Data Integration and ETL

PostgreSQL Integration with SQLAlchemy

# Load and save data to PostgreSQL from sqlalchemy import create_engine, text import pandas as pd def create_db_connection(host, database, user, password, port=5432): """Create SQLAlchemy engine for PostgreSQL.""" connection_string = f"postgresql://{user}:{password}@{host}:{port}/{database}" return create_engine(connection_string) def load_tickets_from_db(engine, start_date, end_date): """ Load ticket data from PostgreSQL with optimized query. Args: engine: SQLAlchemy engine start_date: Start date for filtering end_date: End date for filtering Returns: DataFrame with ticket data """ query = text(""" SELECT t.ticket_id, t.created_at, t.updated_at, t.resolved_at, t.first_response_at, t.priority, t.status, t.channel, t.category, t.agent_id, t.customer_id, t.subject, c.name as customer_name, c.tier as customer_tier, a.name as agent_name, a.team as agent_team FROM tickets t LEFT JOIN customers c ON t.customer_id = c.customer_id LEFT JOIN agents a ON t.agent_id = a.agent_id WHERE t.created_at >= :start_date AND t.created_at < :end_date ORDER BY t.created_at DESC """) # Load with proper data types df = pd.read_sql( query, engine, params={'start_date': start_date, 'end_date': end_date}, parse_dates=['created_at', 'updated_at', 'resolved_at', 'first_response_at'] ) # Optimize data types df['priority'] = df['priority'].astype('category') df['status'] = df['status'].astype('category') df['channel'] = df['channel'].astype('category') df['customer_tier'] = df['customer_tier'].astype('category') return df def save_metrics_to_db(df, table_name, engine, if_exists='replace'): """ Save processed metrics to PostgreSQL. Args: df: DataFrame to save table_name: Target table name engine: SQLAlchemy engine if_exists: 'replace', 'append', or 'fail' """ df.to_sql( table_name, engine, if_exists=if_exists, index=True, method='multi', # Faster multi-row insert chunksize=1000 )

Data Cleaning and Validation

# Comprehensive data cleaning for support data def clean_ticket_data(df): """ Clean and validate ticket data. Args: df: Raw ticket DataFrame Returns: Cleaned DataFrame with validation report """ validation_report = {} # 1. Handle missing values validation_report['missing_before'] = df.isnull().sum().to_dict() # Fill missing agent_id for unassigned tickets df['agent_id'] = df['agent_id'].fillna('UNASSIGNED') # Fill missing categories df['category'] = df['category'].fillna('UNCATEGORIZED') # Drop tickets with missing critical fields critical_fields = ['ticket_id', 'created_at', 'customer_id'] df = df.dropna(subset=critical_fields) validation_report['missing_after'] = df.isnull().sum().to_dict() # 2. Remove duplicates validation_report['duplicates_found'] = df.duplicated(subset=['ticket_id']).sum() df = df.drop_duplicates(subset=['ticket_id'], keep='first') # 3. Validate data types and ranges df['created_at'] = pd.to_datetime(df['created_at'], errors='coerce') df['resolved_at'] = pd.to_datetime(df['resolved_at'], errors='coerce') # 4. Validate business logic # Resolution time should be positive invalid_resolution = df[ (df['resolved_at'].notna()) & (df['resolved_at'] < df['created_at']) ] validation_report['invalid_resolution_times'] = len(invalid_resolution) # Fix by setting to None df.loc[df['resolved_at'] < df['created_at'], 'resolved_at'] = None # 5. Standardize categorical values priority_mapping = { 'CRITICAL': 'critical', 'HIGH': 'high', 'MEDIUM': 'medium', 'LOW': 'low', 'urgent': 'high', 'normal': 'medium' } df['priority'] = df['priority'].replace(priority_mapping) # 6. Outlier detection for response times if 'first_response_time' in df.columns: q1 = df['first_response_time'].quantile(0.25) q3 = df['first_response_time'].quantile(0.75) iqr = q3 - q1 outlier_threshold = q3 + (3 * iqr) validation_report['response_time_outliers'] = ( df['first_response_time'] > outlier_threshold ).sum() validation_report['final_row_count'] = len(df) return df, validation_report

4. GroupBy and Aggregation Operations

Multi-level Grouping for Team Analytics

# Complex groupby operations for team performance def analyze_team_performance(tickets_df): """ Perform multi-level grouping for team and agent analytics. Returns: Multiple DataFrames with different aggregation levels """ # Level 1: Team-level metrics team_metrics = tickets_df.groupby('agent_team').agg({ 'ticket_id': 'count', 'resolution_time': ['mean', 'median', 'std', 'min', 'max'], 'csat_score': ['mean', 'count'], 'resolution_sla_met': 'mean', 'reopened': 'sum' }) # Level 2: Team + Priority breakdown team_priority_metrics = tickets_df.groupby( ['agent_team', 'priority'] )['ticket_id'].count().unstack(fill_value=0) # Level 3: Team + Agent detailed metrics team_agent_metrics = tickets_df.groupby( ['agent_team', 'agent_id', 'agent_name'] ).agg({ 'ticket_id': 'count', 'resolution_time': 'mean', 'csat_score': 'mean', 'resolution_sla_met': 'mean' }) # Calculate team rankings team_metrics['rank_by_volume'] = team_metrics['ticket_id']['count'].rank( ascending=False ) team_metrics['rank_by_csat'] = team_metrics['csat_score']['mean'].rank( ascending=False ) return team_metrics, team_priority_metrics, team_agent_metrics # Custom aggregation functions def calculate_p95(series): """Calculate 95th percentile.""" return series.quantile(0.95) def calculate_p99(series): """Calculate 99th percentile.""" return series.quantile(0.99) # Advanced groupby with custom aggregations def detailed_response_time_analysis(tickets_df): """Calculate detailed response time statistics.""" return tickets_df.groupby('priority').agg({ 'first_response_time': [ 'count', 'mean', 'median', 'std', 'min', 'max', calculate_p95, calculate_p99 ] })

5. Merging and Joining Data

Complex Join Operations

# Merge ticket, customer, and agent data def create_comprehensive_dataset(tickets_df, customers_df, agents_df, csat_df): """ Merge multiple data sources into comprehensive dataset. Args: tickets_df: Ticket information customers_df: Customer information agents_df: Agent information csat_df: Customer satisfaction scores Returns: Merged DataFrame with all relevant information """ # Step 1: Merge tickets with customers (left join - keep all tickets) data = tickets_df.merge( customers_df[['customer_id', 'name', 'tier', 'industry', 'contract_value']], on='customer_id', how='left', suffixes=('', '_customer') ) # Step 2: Merge with agents (left join) data = data.merge( agents_df[['agent_id', 'name', 'team', 'hire_date', 'specialization']], on='agent_id', how='left', suffixes=('', '_agent') ) # Step 3: Merge with CSAT scores (left join) data = data.merge( csat_df[['ticket_id', 'csat_score', 'csat_comment']], on='ticket_id', how='left' ) # Validate merge results print(f"Original tickets: {len(tickets_df)}") print(f"After merges: {len(data)}") print(f"Customers matched: {data['name_customer'].notna().sum()}") print(f"Agents matched: {data['name_agent'].notna().sum()}") print(f"CSAT scores available: {data['csat_score'].notna().sum()}") return data # Concat operations for combining time periods def combine_historical_data(data_sources): """ Combine data from multiple time periods or sources. Args: data_sources: List of DataFrames to combine Returns: Combined DataFrame with source tracking """ # Add source identifier to each DataFrame for i, df in enumerate(data_sources): df['source_batch'] = f'batch_{i+1}' # Concatenate vertically combined = pd.concat(data_sources, ignore_index=True) # Remove duplicates (prefer newer data) combined = combined.sort_values('updated_at', ascending=False) combined = combined.drop_duplicates(subset=['ticket_id'], keep='first') return combined

6. Time Series Analysis

Resampling and Rolling Windows

# Time series operations for support metrics def calculate_rolling_metrics(tickets_df, window_days=7): """ Calculate rolling window metrics for trend analysis. Args: tickets_df: Ticket DataFrame with datetime index window_days: Window size in days Returns: DataFrame with rolling metrics """ # Prepare time series ts_data = tickets_df.set_index('created_at').sort_index() # Daily aggregation daily_metrics = ts_data.resample('D').agg({ 'ticket_id': 'count', 'resolution_time': 'mean', 'csat_score': 'mean', 'resolution_sla_met': 'mean' }).rename(columns={'ticket_id': 'daily_tickets'}) # Rolling window calculations window = window_days daily_metrics['tickets_rolling_avg'] = ( daily_metrics['daily_tickets'].rolling(window).mean() ) daily_metrics['tickets_rolling_std'] = ( daily_metrics['daily_tickets'].rolling(window).std() ) # Calculate control limits for anomaly detection daily_metrics['upper_control_limit'] = ( daily_metrics['tickets_rolling_avg'] + (2 * daily_metrics['tickets_rolling_std']) ) daily_metrics['lower_control_limit'] = ( daily_metrics['tickets_rolling_avg'] - (2 * daily_metrics['tickets_rolling_std']) ).clip(lower=0) # Flag anomalies daily_metrics['is_anomaly'] = ( (daily_metrics['daily_tickets'] > daily_metrics['upper_control_limit']) | (daily_metrics['daily_tickets'] < daily_metrics['lower_control_limit']) ) return daily_metrics # Business day calculations def calculate_business_day_metrics(tickets_df): """Calculate metrics excluding weekends and holidays.""" from pandas.tseries.offsets import CustomBusinessDay # Define US holidays (customize as needed) us_bd = CustomBusinessDay() # Filter to business days only tickets_df['is_business_day'] = tickets_df['created_at'].dt.dayofweek < 5 business_tickets = tickets_df[tickets_df['is_business_day']] # Calculate business day metrics bd_metrics = business_tickets.groupby( business_tickets['created_at'].dt.date ).agg({ 'ticket_id': 'count', 'resolution_time': 'mean' }) return bd_metrics

7. Pivot Tables and Cross-tabulation

Creating Management Reports

# Pivot tables for executive reporting def create_executive_dashboard_data(tickets_df): """ Create pivot tables for executive dashboard. Returns: Dictionary of pivot tables for different views """ dashboards = {} # 1. Tickets by Team and Priority dashboards['team_priority'] = pd.pivot_table( tickets_df, values='ticket_id', index='agent_team', columns='priority', aggfunc='count', fill_value=0, margins=True, margins_name='Total' ) # 2. Average Resolution Time by Team and Channel dashboards['resolution_by_team_channel'] = pd.pivot_table( tickets_df, values='resolution_time', index='agent_team', columns='channel', aggfunc='mean', fill_value=0 ) # 3. SLA Compliance by Priority and Week tickets_df['week'] = tickets_df['created_at'].dt.to_period('W') dashboards['sla_compliance_weekly'] = pd.pivot_table( tickets_df, values='resolution_sla_met', index='week', columns='priority', aggfunc='mean', fill_value=0 ) # 4. CSAT by Agent and Customer Tier dashboards['csat_by_agent_tier'] = pd.pivot_table( tickets_df, values='csat_score', index='agent_name', columns='customer_tier', aggfunc=['mean', 'count'], fill_value=0 ) # 5. Ticket Volume Heatmap (Day of Week vs Hour) tickets_df['day_of_week'] = tickets_df['created_at'].dt.day_name() tickets_df['hour'] = tickets_df['created_at'].dt.hour dashboards['volume_heatmap'] = pd.pivot_table( tickets_df, values='ticket_id', index='day_of_week', columns='hour', aggfunc='count', fill_value=0 ) return dashboards # Cross-tabulation for category analysis def analyze_category_distribution(tickets_df): """Create cross-tabs for ticket category analysis.""" # Category vs Priority category_priority = pd.crosstab( tickets_df['category'], tickets_df['priority'], normalize='index', # Row percentages margins=True ) # Category vs Team (with counts) category_team = pd.crosstab( tickets_df['category'], tickets_df['agent_team'], margins=True ) return category_priority, category_team

8. Data Export and Reporting

Export to Multiple Formats

# Export data for stakeholder reporting def export_monthly_report(tickets_df, output_dir, month): """ Export comprehensive monthly report in multiple formats. Args: tickets_df: Ticket data for the month output_dir: Directory to save reports month: Month identifier (e.g., '2024-01') """ import os from datetime import datetime # 1. Export to Excel with multiple sheets excel_path = os.path.join(output_dir, f'support_report_{month}.xlsx') with pd.ExcelWriter(excel_path, engine='openpyxl') as writer: # Summary sheet summary = tickets_df.groupby('priority').agg({ 'ticket_id': 'count', 'resolution_time': ['mean', 'median'], 'csat_score': 'mean', 'resolution_sla_met': 'mean' }) summary.to_excel(writer, sheet_name='Summary') # Team metrics sheet team_metrics = tickets_df.groupby('agent_team').agg({ 'ticket_id': 'count', 'resolution_time': 'mean', 'csat_score': 'mean' }) team_metrics.to_excel(writer, sheet_name='Team Metrics') # Raw data sheet (limited to first 10000 rows) tickets_df.head(10000).to_excel( writer, sheet_name='Raw Data', index=False ) # 2. Export to CSV for data analysis csv_path = os.path.join(output_dir, f'tickets_{month}.csv') tickets_df.to_csv(csv_path, index=False, encoding='utf-8') # 3. Export to JSON for API consumption json_path = os.path.join(output_dir, f'metrics_{month}.json') metrics = { 'total_tickets': int(tickets_df['ticket_id'].count()), 'avg_resolution_time': float(tickets_df['resolution_time'].mean()), 'sla_compliance': float(tickets_df['resolution_sla_met'].mean()), 'avg_csat': float(tickets_df['csat_score'].mean()), 'by_priority': tickets_df.groupby('priority')['ticket_id'].count().to_dict() } with open(json_path, 'w') as f: import json json.dump(metrics, f, indent=2, default=str) # 4. Export to Parquet for efficient storage parquet_path = os.path.join(output_dir, f'tickets_{month}.parquet') tickets_df.to_parquet(parquet_path, compression='snappy', index=False) print(f"Reports exported to {output_dir}") print(f" - Excel: {excel_path}") print(f" - CSV: {csv_path}") print(f" - JSON: {json_path}") print(f" - Parquet: {parquet_path}") # Format DataFrames for presentation def format_for_presentation(df): """Format DataFrame for stakeholder presentation.""" # Round numeric columns numeric_cols = df.select_dtypes(include=['float64', 'float32']).columns df[numeric_cols] = df[numeric_cols].round(2) # Format percentages percentage_cols = [col for col in df.columns if 'rate' in col or 'pct' in col] for col in percentage_cols: df[col] = df[col].apply(lambda x: f"{x*100:.1f}%") # Format currency if applicable currency_cols = [col for col in df.columns if 'revenue' in col or 'value' in col] for col in currency_cols: df[col] = df[col].apply(lambda x: f"${x:,.2f}") return df

9. Performance Optimization

Memory Optimization Techniques

# Optimize DataFrame memory usage def optimize_dataframe_memory(df): """ Reduce DataFrame memory footprint. Args: df: DataFrame to optimize Returns: Optimized DataFrame with memory usage report """ initial_memory = df.memory_usage(deep=True).sum() / 1024**2 # Optimize integer columns int_cols = df.select_dtypes(include=['int64']).columns for col in int_cols: col_min = df[col].min() col_max = df[col].max() if col_min >= 0: if col_max < 255: df[col] = df[col].astype('uint8') elif col_max < 65535: df[col] = df[col].astype('uint16') elif col_max < 4294967295: df[col] = df[col].astype('uint32') else: if col_min > -128 and col_max < 127: df[col] = df[col].astype('int8') elif col_min > -32768 and col_max < 32767: df[col] = df[col].astype('int16') elif col_min > -2147483648 and col_max < 2147483647: df[col] = df[col].astype('int32') # Optimize float columns float_cols = df.select_dtypes(include=['float64']).columns df[float_cols] = df[float_cols].astype('float32') # Convert object columns to category if cardinality is low object_cols = df.select_dtypes(include=['object']).columns for col in object_cols: num_unique = df[col].nunique() num_total = len(df[col]) if num_unique / num_total < 0.5: # Less than 50% unique values df[col] = df[col].astype('category') final_memory = df.memory_usage(deep=True).sum() / 1024**2 reduction = (1 - final_memory/initial_memory) * 100 print(f"Memory usage reduced from {initial_memory:.2f} MB to {final_memory:.2f} MB") print(f"Reduction: {reduction:.1f}%") return df # Chunked processing for large datasets def process_large_dataset_in_chunks(file_path, chunk_size=10000): """ Process large CSV files in chunks to avoid memory issues. Args: file_path: Path to large CSV file chunk_size: Number of rows per chunk Returns: Aggregated results from all chunks """ # Initialize aggregation containers total_tickets = 0 priority_counts = {} # Process in chunks for chunk in pd.read_csv(file_path, chunksize=chunk_size): # Process each chunk chunk = clean_ticket_data(chunk)[0] # Aggregate metrics total_tickets += len(chunk) chunk_priority = chunk['priority'].value_counts().to_dict() for priority, count in chunk_priority.items(): priority_counts[priority] = priority_counts.get(priority, 0) + count return { 'total_tickets': total_tickets, 'priority_distribution': priority_counts }

10. Data Quality and Validation

Validation Framework

# Comprehensive data quality checks class DataQualityValidator: """Validate data quality for support ticket datasets.""" def __init__(self, df): self.df = df self.issues = [] def check_required_columns(self, required_cols): """Ensure all required columns are present.""" missing = set(required_cols) - set(self.df.columns) if missing: self.issues.append(f"Missing required columns: {missing}") return len(missing) == 0 def check_null_percentages(self, max_null_pct=0.1): """Check if null percentage exceeds threshold.""" null_pct = self.df.isnull().sum() / len(self.df) excessive_nulls = null_pct[null_pct > max_null_pct] if not excessive_nulls.empty: self.issues.append( f"Columns with >{max_null_pct*100}% nulls: {excessive_nulls.to_dict()}" ) return excessive_nulls.empty def check_duplicate_ids(self, id_column='ticket_id'): """Check for duplicate ticket IDs.""" duplicates = self.df[id_column].duplicated().sum() if duplicates > 0: self.issues.append(f"Found {duplicates} duplicate ticket IDs") return duplicates == 0 def check_date_logic(self): """Validate date field logic.""" issues_found = 0 # Created date should be before resolved date if 'created_at' in self.df.columns and 'resolved_at' in self.df.columns: invalid = ( self.df['resolved_at'].notna() & (self.df['resolved_at'] < self.df['created_at']) ).sum() if invalid > 0: self.issues.append( f"Found {invalid} tickets with resolved_at before created_at" ) issues_found += invalid # Check for future dates now = pd.Timestamp.now() for date_col in ['created_at', 'resolved_at', 'first_response_at']: if date_col in self.df.columns: future_dates = (self.df[date_col] > now).sum() if future_dates > 0: self.issues.append( f"Found {future_dates} future dates in {date_col}" ) issues_found += future_dates return issues_found == 0 def check_value_ranges(self, range_checks): """ Check if values are within expected ranges. Args: range_checks: Dict with column: (min, max) pairs """ for col, (min_val, max_val) in range_checks.items(): if col in self.df.columns: out_of_range = ( (self.df[col] < min_val) | (self.df[col] > max_val) ).sum() if out_of_range > 0: self.issues.append( f"{col}: {out_of_range} values outside range [{min_val}, {max_val}]" ) def generate_report(self): """Generate comprehensive validation report.""" return { 'total_rows': len(self.df), 'total_columns': len(self.df.columns), 'issues_found': len(self.issues), 'issues': self.issues, 'memory_usage_mb': self.df.memory_usage(deep=True).sum() / 1024**2, 'null_summary': self.df.isnull().sum().to_dict() }

11. Testing Pandas Operations

Unit Testing with pytest

# pytest fixtures and tests for data operations import pytest import pandas as pd import numpy as np from datetime import datetime, timedelta @pytest.fixture def sample_ticket_data(): """Create sample ticket data for testing.""" np.random.seed(42) n_tickets = 100 return pd.DataFrame({ 'ticket_id': range(1, n_tickets + 1), 'created_at': pd.date_range('2024-01-01', periods=n_tickets, freq='H'), 'priority': np.random.choice(['low', 'medium', 'high'], n_tickets), 'status': np.random.choice(['open', 'in_progress', 'resolved'], n_tickets), 'agent_id': np.random.choice(['A001', 'A002', 'A003'], n_tickets), 'customer_id': np.random.choice(['C001', 'C002', 'C003'], n_tickets) }) def test_ticket_data_shape(sample_ticket_data): """Test that sample data has expected shape.""" assert sample_ticket_data.shape == (100, 6) assert 'ticket_id' in sample_ticket_data.columns def test_sla_calculation(): """Test SLA calculation logic.""" df = pd.DataFrame({ 'ticket_id': [1, 2], 'created_at': pd.to_datetime(['2024-01-01 10:00', '2024-01-01 11:00']), 'first_response_at': pd.to_datetime(['2024-01-01 11:00', '2024-01-01 14:00']), 'sla_target_hours': [2, 2] }) df['response_time_hours'] = ( df['first_response_at'] - df['created_at'] ).dt.total_seconds() / 3600 df['sla_met'] = df['response_time_hours'] <= df['sla_target_hours'] assert df.loc[0, 'sla_met'] == True assert df.loc[1, 'sla_met'] == False def test_data_cleaning_removes_nulls(sample_ticket_data): """Test that data cleaning handles null values.""" # Add some null values df = sample_ticket_data.copy() df.loc[0, 'agent_id'] = None df.loc[1, 'customer_id'] = None # Apply cleaning cleaned, report = clean_ticket_data(df) # Verify nulls were handled assert 'UNASSIGNED' in cleaned['agent_id'].values assert report['missing_before']['agent_id'] == 1 def test_groupby_aggregation(sample_ticket_data): """Test groupby aggregation produces correct results.""" result = sample_ticket_data.groupby('priority')['ticket_id'].count() assert result.sum() == 100 assert all(priority in result.index for priority in ['low', 'medium', 'high'])

Best Practices

1. Always Use Vectorized Operations

Avoid Python loops when working with pandas. Use vectorized operations for better performance:

# Bad - slow loop for idx, row in df.iterrows(): df.at[idx, 'new_col'] = row['col1'] * row['col2'] # Good - vectorized operation df['new_col'] = df['col1'] * df['col2']

2. Use Method Chaining for Readability

result = ( df .query('status == "resolved"') .groupby('agent_id') .agg({'resolution_time': 'mean'}) .sort_values('resolution_time') .head(10) )

3. Optimize Data Types Early

Convert to appropriate data types immediately after loading to save memory and improve performance.

4. Use .loc[] and .iloc[] Explicitly

Avoid chained indexing which can lead to SettingWithCopyWarning and unexpected behavior.

5. Handle Time Zones Properly

Always work with timezone-aware datetime objects for support data across regions.

6. Document Data Transformations

Add comments explaining business logic in complex transformations.

7. Validate Data at Every Step

Implement validation checks after major transformations to catch issues early.

8. Use Appropriate Index Types

Set meaningful indices (datetime for time series, ticket_id for lookups) to improve performance.

Common Pitfalls to Avoid

  1. SettingWithCopyWarning: Always use .loc[] for setting values
  2. Memory Issues: Process large datasets in chunks or optimize data types
  3. Lost Index: Remember that many operations return new DataFrames without preserving the index
  4. Implicit Type Conversion: Be explicit about data type conversions
  5. Ambiguous Truth Values: Use .any() or .all() when evaluating Series in boolean context
  6. Mixing Time Zones: Ensure consistent timezone handling across datetime columns

Integration Patterns

With pytest for Testing

Always write tests for data transformation functions using pytest fixtures and parametrize decorators.

With SQLAlchemy for Database Operations

Use SQLAlchemy engines for database connections and leverage pandas' read_sql and to_sql methods.

With PostgreSQL for Data Persistence

Store processed metrics in PostgreSQL for historical tracking and dashboard consumption.

With Excel for Stakeholder Reports

Use pd.ExcelWriter with the openpyxl engine for creating multi-sheet Excel reports.

Performance Guidelines

  1. Use categorical data types for columns with low cardinality (< 50% unique values)
  2. Process in chunks when dataset exceeds available memory
  3. Use query() method for complex filtering (compiles to optimized code)
  4. Avoid apply() when possible - use vectorized operations instead
  5. Use eval() for complex expressions on large DataFrames
  6. Set appropriate dtypes when reading CSV files to avoid inference overhead
  7. Use copy() judiciously - only when you need true copies to avoid memory waste

Conclusion

You are now equipped to handle comprehensive data analysis and manipulation tasks for customer support operations using pandas. Apply these patterns to analyze ticket data, track SLA compliance, measure agent performance, and generate actionable insights for support teams. Always prioritize data quality, performance optimization, and clear, maintainable code.

manutej

manutej

luxor-claude-marketplace

View on GitHub

Download Skill Files

View Installation Guide

Download the complete skill directory including SKILL.md and all related files