report-generator

Generate professional markdown and HTML reports from data with charts, tables, and analysis.

About report-generator

report-generator is a Claude AI skill developed by CuriousLearner. Generate professional markdown and HTML reports from data with charts, tables, and analysis. This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.

12Stars
2Forks
2025-10-20

Why use report-generator? With 12 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.

namereport-generator
descriptionGenerate professional markdown and HTML reports from data with charts, tables, and analysis.

Report Generator Skill

Generate professional markdown and HTML reports from data with charts, tables, and analysis.

Instructions

You are a report generation expert. When invoked:

  1. Analyze Data:

    • Understand data structure and content
    • Identify key metrics and insights
    • Calculate statistics and trends
    • Detect patterns and anomalies
    • Generate executive summaries
  2. Create Report Structure:

    • Design clear, logical sections
    • Create table of contents
    • Add executive summary
    • Include detailed analysis
    • Provide recommendations
  3. Generate Visualizations:

    • Create tables for structured data
    • Generate charts (bar, line, pie, scatter)
    • Add badges and indicators
    • Include code blocks and examples
    • Format numbers and percentages
  4. Format Output:

    • Generate markdown reports
    • Create HTML reports with styling
    • Export to PDF
    • Add branding and customization
    • Ensure responsive design

Usage Examples

@report-generator data.csv
@report-generator --format html
@report-generator --template executive-summary
@report-generator --charts --pdf
@report-generator --compare baseline.json current.json

Report Types

Executive Summary Report

def generate_executive_summary(data, title="Executive Summary"): """ Generate high-level executive summary report """ from datetime import datetime report = f"""# {title} **Generated:** {datetime.now().strftime('%B %d, %Y at %I:%M %p')} --- ## Key Highlights """ # Calculate key metrics metrics = calculate_key_metrics(data) for metric in metrics: icon = "✅" if metric['status'] == 'good' else "⚠️" if metric['status'] == 'warning' else "❌" report += f"{icon} **{metric['name']}**: {metric['value']}\n" report += f""" --- ## Performance Overview | Metric | Current | Previous | Change | |--------|---------|----------|--------| """ for metric in metrics: if 'previous' in metric: change = calculate_change(metric['current'], metric['previous']) arrow = "↑" if change > 0 else "↓" if change < 0 else "→" color = "green" if change > 0 else "red" if change < 0 else "gray" report += f"| {metric['name']} | {metric['current']:,} | {metric['previous']:,} | {arrow} {abs(change):.1f}% |\n" report += """ --- ## Recommendations """ recommendations = generate_recommendations(metrics) for i, rec in enumerate(recommendations, 1): priority = rec.get('priority', 'medium') emoji = "🔴" if priority == 'high' else "🟡" if priority == 'medium' else "🟢" report += f"{i}. {emoji} **{rec['title']}**\n" report += f" {rec['description']}\n\n" return report

Data Analysis Report

import pandas as pd import numpy as np from datetime import datetime def generate_data_analysis_report(df, title="Data Analysis Report"): """ Generate comprehensive data analysis report """ report = f"""# {title} **Date:** {datetime.now().strftime('%Y-%m-%d')} **Dataset:** {len(df):,} rows × {len(df.columns)} columns --- ## Table of Contents 1. [Dataset Overview](#dataset-overview) 2. [Data Quality](#data-quality) 3. [Statistical Summary](#statistical-summary) 4. [Distributions](#distributions) 5. [Correlations](#correlations) 6. [Insights](#insights) --- ## Dataset Overview ### Basic Information - **Total Rows:** {len(df):,} - **Total Columns:** {len(df.columns)} - **Memory Usage:** {df.memory_usage(deep=True).sum() / 1024**2:.2f} MB - **Duplicate Rows:** {df.duplicated().sum():,} ### Column Information | Column | Type | Non-Null | Unique | Sample Values | |--------|------|----------|--------|---------------| """ for col in df.columns: dtype = str(df[col].dtype) non_null = df[col].count() unique = df[col].nunique() samples = df[col].dropna().head(3).tolist() sample_str = ", ".join(str(s) for s in samples) report += f"| {col} | {dtype} | {non_null:,} | {unique:,} | {sample_str} |\n" report += """ --- ## Data Quality ### Missing Values """ missing = df.isnull().sum() if missing.sum() > 0: report += "| Column | Missing Count | Missing % |\n" report += "|--------|---------------|----------|\n" for col in missing[missing > 0].index: count = missing[col] pct = (count / len(df)) * 100 report += f"| {col} | {count:,} | {pct:.1f}% |\n" else: report += "✅ No missing values detected.\n" report += "\n### Data Type Issues\n\n" # Check for potential type issues type_issues = [] for col in df.select_dtypes(include=['object']): # Check if column should be numeric try: pd.to_numeric(df[col], errors='raise') type_issues.append(f"- `{col}` appears to be numeric but stored as string") except: pass # Check if column should be datetime try: pd.to_datetime(df[col], errors='raise') if df[col].str.contains(r'\d{4}-\d{2}-\d{2}').any(): type_issues.append(f"- `{col}` appears to be datetime but stored as string") except: pass if type_issues: report += "\n".join(type_issues) + "\n" else: report += "✅ No data type issues detected.\n" report += """ --- ## Statistical Summary ### Numeric Columns """ # Add statistics for numeric columns numeric_cols = df.select_dtypes(include=[np.number]).columns if len(numeric_cols) > 0: stats = df[numeric_cols].describe() report += stats.to_markdown() + "\n" # Add additional statistics report += "\n### Additional Statistics\n\n" report += "| Column | Median | Mode | Std Dev | Variance |\n" report += "|--------|--------|------|---------|----------|\n" for col in numeric_cols: median = df[col].median() mode = df[col].mode().iloc[0] if not df[col].mode().empty else "N/A" std = df[col].std() var = df[col].var() report += f"| {col} | {median:.2f} | {mode} | {std:.2f} | {var:.2f} |\n" report += """ ### Categorical Columns """ categorical_cols = df.select_dtypes(include=['object']).columns if len(categorical_cols) > 0: for col in categorical_cols[:5]: # Limit to first 5 report += f"\n#### {col}\n\n" value_counts = df[col].value_counts().head(10) report += "| Value | Count | Percentage |\n" report += "|-------|-------|------------|\n" for value, count in value_counts.items(): pct = (count / len(df)) * 100 report += f"| {value} | {count:,} | {pct:.1f}% |\n" report += """ --- ## Distributions """ # Analyze distributions of numeric columns for col in numeric_cols[:5]: # Limit to first 5 report += f"\n### {col} Distribution\n\n" q1 = df[col].quantile(0.25) q2 = df[col].quantile(0.50) q3 = df[col].quantile(0.75) iqr = q3 - q1 # Detect outliers lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr outliers = df[(df[col] < lower_bound) | (df[col] > upper_bound)] report += f""" **Quartiles:** - Q1 (25%): {q1:.2f} - Q2 (50%, Median): {q2:.2f} - Q3 (75%): {q3:.2f} - IQR: {iqr:.2f} **Outliers:** {len(outliers)} ({len(outliers)/len(df)*100:.1f}%) - Lower bound: {lower_bound:.2f} - Upper bound: {upper_bound:.2f} """ report += """ --- ## Correlations """ if len(numeric_cols) > 1: corr_matrix = df[numeric_cols].corr() report += "\n### Correlation Matrix\n\n" report += corr_matrix.to_markdown() + "\n" # Find strong correlations report += "\n### Strong Correlations (|r| > 0.7)\n\n" strong_corr = [] for i in range(len(corr_matrix.columns)): for j in range(i+1, len(corr_matrix.columns)): corr_val = corr_matrix.iloc[i, j] if abs(corr_val) > 0.7: col1 = corr_matrix.columns[i] col2 = corr_matrix.columns[j] strong_corr.append((col1, col2, corr_val)) if strong_corr: for col1, col2, corr_val in strong_corr: direction = "positive" if corr_val > 0 else "negative" report += f"- **{col1}** ↔ **{col2}**: {corr_val:.3f} ({direction})\n" else: report += "No strong correlations found.\n" report += """ --- ## Insights """ # Generate insights insights = generate_insights(df) for insight in insights: report += f"### {insight['title']}\n\n" report += f"{insight['description']}\n\n" if 'details' in insight: for detail in insight['details']: report += f"- {detail}\n" report += "\n" return report def generate_insights(df): """Generate data insights""" insights = [] # Insight: Completeness missing_pct = (df.isnull().sum().sum() / (len(df) * len(df.columns))) * 100 if missing_pct < 1: status = "excellent" emoji = "✅" elif missing_pct < 5: status = "good" emoji = "👍" else: status = "needs attention" emoji = "⚠️" insights.append({ "title": f"{emoji} Data Completeness: {status.title()}", "description": f"Overall data completeness is {100-missing_pct:.1f}% with {missing_pct:.1f}% missing values.", "details": [ f"Total cells: {len(df) * len(df.columns):,}", f"Missing cells: {df.isnull().sum().sum():,}" ] }) # Insight: Duplicates dup_count = df.duplicated().sum() if dup_count > 0: insights.append({ "title": f"⚠️ Duplicate Records Found", "description": f"Found {dup_count:,} duplicate rows ({dup_count/len(df)*100:.1f}% of dataset)", "details": [ "Consider removing duplicates for accurate analysis", "Review business logic for duplicate handling" ] }) return insights

Performance Report

def generate_performance_report(metrics, baseline=None): """ Generate performance comparison report """ report = f"""# Performance Report **Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} --- ## Summary """ if baseline: report += "### Comparison with Baseline\n\n" report += "| Metric | Current | Baseline | Change | Status |\n" report += "|--------|---------|----------|--------|--------|\n" for metric_name, current_value in metrics.items(): if metric_name in baseline: baseline_value = baseline[metric_name] change = ((current_value - baseline_value) / baseline_value) * 100 if abs(change) < 5: status = "🟢 Stable" elif change > 0: status = "🟢 Improved" if is_improvement(metric_name, change) else "🔴 Degraded" else: status = "🔴 Degraded" if is_improvement(metric_name, change) else "🟢 Improved" report += f"| {metric_name} | {current_value:.2f} | {baseline_value:.2f} | {change:+.1f}% | {status} |\n" else: report += "### Current Metrics\n\n" report += "| Metric | Value | Status |\n" report += "|--------|-------|--------|\n" for metric_name, value in metrics.items(): threshold = get_threshold(metric_name) status = evaluate_metric(value, threshold) report += f"| {metric_name} | {value:.2f} | {status} |\n" report += """ --- ## Detailed Analysis """ for metric_name, value in metrics.items(): report += f"### {metric_name}\n\n" if baseline and metric_name in baseline: baseline_value = baseline[metric_name] change = ((value - baseline_value) / baseline_value) * 100 report += f"- **Current:** {value:.2f}\n" report += f"- **Baseline:** {baseline_value:.2f}\n" report += f"- **Change:** {change:+.1f}%\n\n" if abs(change) > 10: report += f"⚠️ Significant change detected. " report += "Review recent changes that may have impacted this metric.\n\n" else: report += f"- **Value:** {value:.2f}\n\n" return report def is_improvement(metric_name, change): """Determine if change is improvement based on metric type""" # Lower is better for these metrics lower_is_better = ['response_time', 'error_rate', 'latency', 'load_time'] for pattern in lower_is_better: if pattern in metric_name.lower(): return change < 0 return change > 0

HTML Report Generation

def generate_html_report(data, title="Report", template="default"): """ Generate styled HTML report """ # CSS styles css = """ <style> body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif; line-height: 1.6; color: #333; max-width: 1200px; margin: 0 auto; padding: 20px; background: #f5f5f5; } .report-container { background: white; padding: 40px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } h1 { color: #2c3e50; border-bottom: 3px solid #3498db; padding-bottom: 10px; } h2 { color: #34495e; margin-top: 30px; border-left: 4px solid #3498db; padding-left: 10px; } h3 { color: #7f8c8d; } table { width: 100%; border-collapse: collapse; margin: 20px 0; } th { background: #3498db; color: white; padding: 12px; text-align: left; font-weight: 600; } td { padding: 10px 12px; border-bottom: 1px solid #ecf0f1; } tr:hover { background: #f8f9fa; } .metric-card { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 20px; border-radius: 8px; margin: 10px 0; box-shadow: 0 4px 6px rgba(0,0,0,0.1); } .metric-value { font-size: 2em; font-weight: bold; } .metric-label { font-size: 0.9em; opacity: 0.9; } .badge { display: inline-block; padding: 4px 12px; border-radius: 12px; font-size: 0.85em; font-weight: 600; } .badge-success { background: #2ecc71; color: white; } .badge-warning { background: #f39c12; color: white; } .badge-danger { background: #e74c3c; color: white; } .chart-container { margin: 30px 0; padding: 20px; background: #f8f9fa; border-radius: 8px; } code { background: #f4f4f4; padding: 2px 6px; border-radius: 3px; font-family: 'Courier New', monospace; } pre { background: #2c3e50; color: #ecf0f1; padding: 15px; border-radius: 5px; overflow-x: auto; } .timestamp { color: #7f8c8d; font-size: 0.9em; } </style> """ # Generate HTML content html = f""" <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>{title}</title> {css} <script src="https://cdn.jsdelivr.net/npm/chart.js"></script> </head> <body> <div class="report-container"> <h1>{title}</h1> <p class="timestamp">Generated: {datetime.now().strftime('%B %d, %Y at %I:%M %p')}</p> {generate_html_content(data)} </div> </body> </html> """ return html def generate_html_content(data): """Generate HTML content from data""" html = "" # Key metrics section if 'metrics' in data: html += "<h2>Key Metrics</h2>" html += '<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 15px;">' for metric in data['metrics']: html += f""" <div class="metric-card"> <div class="metric-label">{metric['name']}</div> <div class="metric-value">{metric['value']}</div> </div> """ html += "</div>" # Table data if 'table' in data: html += "<h2>Data Table</h2>" html += generate_html_table(data['table']) # Charts if 'charts' in data: for chart in data['charts']: html += f'<h2>{chart["title"]}</h2>' html += '<div class="chart-container">' html += generate_chart_html(chart) html += '</div>' return html def generate_html_table(table_data): """Generate HTML table from data""" html = "<table>" # Header if 'headers' in table_data: html += "<thead><tr>" for header in table_data['headers']: html += f"<th>{header}</th>" html += "</tr></thead>" # Rows html += "<tbody>" for row in table_data.get('rows', []): html += "<tr>" for cell in row: html += f"<td>{cell}</td>" html += "</tr>" html += "</tbody>" html += "</table>" return html def generate_chart_html(chart_data): """Generate Chart.js chart""" chart_id = f"chart_{abs(hash(chart_data['title']))}" html = f'<canvas id="{chart_id}" width="400" height="200"></canvas>' html += f""" <script> var ctx = document.getElementById('{chart_id}').getContext('2d'); var chart = new Chart(ctx, {{ type: '{chart_data.get('type', 'bar')}', data: {{ labels: {chart_data['labels']}, datasets: [{{ label: '{chart_data['title']}', data: {chart_data['data']}, backgroundColor: 'rgba(54, 162, 235, 0.5)', borderColor: 'rgba(54, 162, 235, 1)', borderWidth: 2 }}] }}, options: {{ responsive: true, maintainAspectRatio: true, scales: {{ y: {{ beginAtZero: true }} }} }} }}); </script> """ return html

Markdown Tables

def generate_markdown_table(data, headers=None, alignment=None): """ Generate markdown table from data alignment: list of 'left', 'center', 'right' """ if not data: return "" # Auto-detect headers if not provided if headers is None: if isinstance(data[0], dict): headers = list(data[0].keys()) else: headers = [f"Column {i+1}" for i in range(len(data[0]))] # Generate header row table = "| " + " | ".join(str(h) for h in headers) + " |\n" # Generate alignment row if alignment is None: alignment = ['left'] * len(headers) align_chars = { 'left': ':--', 'center': ':-:', 'right': '--:' } table += "| " + " | ".join(align_chars.get(a, ':--') for a in alignment) + " |\n" # Generate data rows for row in data: if isinstance(row, dict): row_data = [str(row.get(h, '')) for h in headers] else: row_data = [str(cell) for cell in row] table += "| " + " | ".join(row_data) + " |\n" return table # Example usage data = [ {"name": "John", "age": 30, "city": "New York"}, {"name": "Jane", "age": 25, "city": "San Francisco"}, {"name": "Bob", "age": 35, "city": "Chicago"} ] table = generate_markdown_table( data, headers=['Name', 'Age', 'City'], alignment=['left', 'right', 'left'] )

Charts and Visualizations

import matplotlib.pyplot as plt import seaborn as sns def generate_chart(data, chart_type='bar', title='Chart', output='chart.png'): """ Generate chart from data """ plt.figure(figsize=(10, 6)) plt.style.use('seaborn-v0_8-darkgrid') if chart_type == 'bar': plt.bar(data['labels'], data['values']) elif chart_type == 'line': plt.plot(data['labels'], data['values'], marker='o', linewidth=2) elif chart_type == 'pie': plt.pie(data['values'], labels=data['labels'], autopct='%1.1f%%') elif chart_type == 'scatter': plt.scatter(data['x'], data['y'], alpha=0.6) plt.title(title, fontsize=16, fontweight='bold') plt.tight_layout() plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output # For markdown reports def embed_chart_in_markdown(chart_path, alt_text="Chart"): """Generate markdown image embed""" return f"![{alt_text}]({chart_path})\n"

PDF Export

from markdown import markdown from weasyprint import HTML def markdown_to_pdf(markdown_text, output_path='report.pdf', css=None): """ Convert markdown to PDF """ # Convert markdown to HTML html_content = markdown(markdown_text, extensions=['tables', 'fenced_code']) # Wrap in HTML document html_doc = f""" <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <style> {css if css else get_default_pdf_css()} </style> </head> <body> {html_content} </body> </html> """ # Convert to PDF HTML(string=html_doc).write_pdf(output_path) def get_default_pdf_css(): """Default CSS for PDF export""" return """ body { font-family: Arial, sans-serif; line-height: 1.6; color: #333; max-width: 800px; margin: 0 auto; padding: 20px; } h1 { color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; } table { width: 100%; border-collapse: collapse; margin: 20px 0; } th, td { border: 1px solid #ddd; padding: 8px; text-align: left; } th { background-color: #3498db; color: white; } code { background: #f4f4f4; padding: 2px 4px; border-radius: 3px; } pre { background: #f4f4f4; padding: 10px; border-radius: 5px; overflow-x: auto; } """

Report Templates

TEMPLATES = { 'executive': { 'sections': ['summary', 'key_metrics', 'recommendations'], 'style': 'concise' }, 'technical': { 'sections': ['overview', 'detailed_analysis', 'code_examples', 'metrics'], 'style': 'comprehensive' }, 'comparison': { 'sections': ['baseline', 'current', 'differences', 'trends'], 'style': 'comparative' } } def generate_from_template(data, template_name='executive'): """Generate report from template""" template = TEMPLATES.get(template_name, TEMPLATES['executive']) report = f"# {template_name.title()} Report\n\n" for section in template['sections']: report += generate_section(data, section, template['style']) return report

Best Practices

  1. Structure reports clearly with table of contents
  2. Use visual hierarchy (headings, tables, charts)
  3. Include timestamps for all reports
  4. Add executive summary for long reports
  5. Use consistent formatting throughout
  6. Include data sources and methodology
  7. Add actionable recommendations
  8. Use charts for trends, tables for detailed data
  9. Export to multiple formats (MD, HTML, PDF)
  10. Automate report generation where possible

Notes

  • Keep reports focused and actionable
  • Use appropriate visualizations for data types
  • Include both summary and detailed views
  • Version control report templates
  • Test PDF export with different data sizes
  • Consider accessibility in HTML reports
  • Use responsive design for HTML reports
  • Cache generated charts for performance
CuriousLearner

CuriousLearner

devkit

View on GitHub

Download Skill Files

View Installation Guide

Download the complete skill directory including SKILL.md and all related files