json-transformer
Transform, manipulate, and analyze JSON data structures with advanced operations.
About json-transformer
json-transformer is a Claude AI skill developed by CuriousLearner. Transform, manipulate, and analyze JSON data structures with advanced operations. This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.
Why use json-transformer? With 12 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.
| name | json-transformer |
| description | Transform, manipulate, and analyze JSON data structures with advanced operations. |
JSON Transformer Skill
Transform, manipulate, and analyze JSON data structures with advanced operations.
Instructions
You are a JSON transformation expert. When invoked:
-
Parse and Validate JSON:
- Parse JSON from files, strings, or APIs
- Validate JSON structure and schema
- Handle malformed JSON gracefully
- Pretty-print and format JSON
- Detect and fix common JSON issues
-
Transform Data Structures:
- Reshape nested objects and arrays
- Flatten and unflatten structures
- Extract specific paths (JSONPath, JMESPath)
- Merge and combine JSON documents
- Filter and map data
-
Advanced Operations:
- Convert between JSON and other formats (CSV, YAML, XML)
- Apply transformations (jq-style operations)
- Query and search JSON data
- Diff and compare JSON documents
- Generate JSON from schemas
-
Data Manipulation:
- Add, update, delete properties
- Rename keys
- Convert data types
- Sort and deduplicate
- Calculate aggregate values
Usage Examples
@json-transformer data.json
@json-transformer --flatten
@json-transformer --path "users[*].email"
@json-transformer --merge file1.json file2.json
@json-transformer --to-csv data.json
@json-transformer --validate schema.json
Basic JSON Operations
Parsing and Writing
Python
import json # Parse JSON string data = json.loads('{"name": "John", "age": 30}') # Parse from file with open('data.json', 'r') as f: data = json.load(f) # Write JSON to file with open('output.json', 'w') as f: json.dump(data, f, indent=2) # Pretty print print(json.dumps(data, indent=2, sort_keys=True)) # Compact output compact = json.dumps(data, separators=(',', ':')) # Handle special types from datetime import datetime import decimal def json_encoder(obj): if isinstance(obj, datetime): return obj.isoformat() if isinstance(obj, decimal.Decimal): return float(obj) raise TypeError(f"Type {type(obj)} not serializable") json.dumps(data, default=json_encoder)
JavaScript
// Parse JSON string const data = JSON.parse('{"name": "John", "age": 30}'); // Parse from file (Node.js) const fs = require('fs'); const data = JSON.parse(fs.readFileSync('data.json', 'utf8')); // Write JSON to file fs.writeFileSync('output.json', JSON.stringify(data, null, 2)); // Pretty print console.log(JSON.stringify(data, null, 2)); // Custom serialization const json = JSON.stringify(data, (key, value) => { if (value instanceof Date) { return value.toISOString(); } return value; }, 2);
jq (Command Line)
# Pretty print cat data.json | jq '.' # Compact output cat data.json | jq -c '.' # Sort keys cat data.json | jq -S '.' # Read from file, write to file jq '.' input.json > output.json
Validation
Python (jsonschema)
from jsonschema import validate, ValidationError # Define schema schema = { "type": "object", "properties": { "name": {"type": "string"}, "age": {"type": "number", "minimum": 0}, "email": {"type": "string", "format": "email"} }, "required": ["name", "email"] } # Validate data data = {"name": "John", "email": "john@example.com", "age": 30} try: validate(instance=data, schema=schema) print("Valid JSON") except ValidationError as e: print(f"Invalid: {e.message}") # Validate against JSON Schema draft from jsonschema import Draft7Validator validator = Draft7Validator(schema) errors = list(validator.iter_errors(data)) for error in errors: print(f"Error at {'.'.join(str(p) for p in error.path)}: {error.message}")
JavaScript (ajv)
const Ajv = require('ajv'); const ajv = new Ajv(); const schema = { type: 'object', properties: { name: { type: 'string' }, age: { type: 'number', minimum: 0 }, email: { type: 'string', format: 'email' } }, required: ['name', 'email'] }; const validate = ajv.compile(schema); const data = { name: 'John', email: 'john@example.com', age: 30 }; if (validate(data)) { console.log('Valid JSON'); } else { console.log('Invalid:', validate.errors); }
Data Extraction and Querying
JSONPath Queries
Python (jsonpath-ng)
from jsonpath_ng import jsonpath, parse data = { "users": [ {"name": "John", "age": 30, "email": "john@example.com"}, {"name": "Jane", "age": 25, "email": "jane@example.com"} ] } # Extract all user names jsonpath_expr = parse('users[*].name') names = [match.value for match in jsonpath_expr.find(data)] # Result: ['John', 'Jane'] # Extract emails of users over 25 jsonpath_expr = parse('users[?(@.age > 25)].email') emails = [match.value for match in jsonpath_expr.find(data)] # Nested extraction data = { "company": { "departments": [ { "name": "Engineering", "employees": [ {"name": "Alice", "salary": 100000}, {"name": "Bob", "salary": 90000} ] } ] } } jsonpath_expr = parse('company.departments[*].employees[*].name') names = [match.value for match in jsonpath_expr.find(data)]
jq
# Extract field echo '{"name": "John", "age": 30}' | jq '.name' # Extract from array echo '[{"name": "John"}, {"name": "Jane"}]' | jq '.[].name' # Filter array echo '[{"name": "John", "age": 30}, {"name": "Jane", "age": 25}]' | \ jq '.[] | select(.age > 25)' # Extract nested fields cat data.json | jq '.users[].email' # Multiple fields cat data.json | jq '.users[] | {name: .name, email: .email}' # Conditional extraction cat data.json | jq '.users[] | select(.age > 25) | .email'
JMESPath Queries
Python (jmespath)
import jmespath data = { "users": [ {"name": "John", "age": 30, "tags": ["admin", "developer"]}, {"name": "Jane", "age": 25, "tags": ["developer"]}, {"name": "Bob", "age": 35, "tags": ["manager"]} ] } # Simple extraction names = jmespath.search('users[*].name', data) # Result: ['John', 'Jane', 'Bob'] # Filtering admins = jmespath.search('users[?contains(tags, `admin`)]', data) # Multiple conditions senior_devs = jmespath.search( 'users[?age > `28` && contains(tags, `developer`)]', data ) # Projections result = jmespath.search('users[*].{name: name, age: age}', data) # Nested queries data = { "departments": [ { "name": "Engineering", "employees": [ {"name": "Alice", "skills": ["Python", "Go"]}, {"name": "Bob", "skills": ["JavaScript", "Python"]} ] } ] } python_devs = jmespath.search( 'departments[*].employees[?contains(skills, `Python`)].name', data )
Data Transformation
Flattening Nested JSON
Python
def flatten_json(nested_json, parent_key='', sep='.'): """ Flatten nested JSON structure """ items = [] for key, value in nested_json.items(): new_key = f"{parent_key}{sep}{key}" if parent_key else key if isinstance(value, dict): items.extend(flatten_json(value, new_key, sep=sep).items()) elif isinstance(value, list): for i, item in enumerate(value): if isinstance(item, dict): items.extend(flatten_json(item, f"{new_key}[{i}]", sep=sep).items()) else: items.append((f"{new_key}[{i}]", item)) else: items.append((new_key, value)) return dict(items) # Example nested = { "user": { "name": "John", "address": { "city": "New York", "zip": "10001" }, "tags": ["admin", "developer"] } } flat = flatten_json(nested) # Result: { # 'user.name': 'John', # 'user.address.city': 'New York', # 'user.address.zip': '10001', # 'user.tags[0]': 'admin', # 'user.tags[1]': 'developer' # }
JavaScript
function flattenJSON(obj, prefix = '', result = {}) { for (const [key, value] of Object.entries(obj)) { const newKey = prefix ? `${prefix}.${key}` : key; if (value && typeof value === 'object' && !Array.isArray(value)) { flattenJSON(value, newKey, result); } else if (Array.isArray(value)) { value.forEach((item, index) => { if (typeof item === 'object') { flattenJSON(item, `${newKey}[${index}]`, result); } else { result[`${newKey}[${index}]`] = item; } }); } else { result[newKey] = value; } } return result; }
Unflattening JSON
def unflatten_json(flat_json, sep='.'): """ Unflatten a flattened JSON structure """ result = {} for key, value in flat_json.items(): parts = key.split(sep) current = result for i, part in enumerate(parts[:-1]): # Handle array notation if '[' in part: array_key, index = part.split('[') index = int(index.rstrip(']')) if array_key not in current: current[array_key] = [] # Extend array if needed while len(current[array_key]) <= index: current[array_key].append({}) current = current[array_key][index] else: if part not in current: current[part] = {} current = current[part] # Set the final value final_key = parts[-1] if '[' in final_key: array_key, index = final_key.split('[') index = int(index.rstrip(']')) if array_key not in current: current[array_key] = [] while len(current[array_key]) <= index: current[array_key].append(None) current[array_key][index] = value else: current[final_key] = value return result
Merging JSON
Python
def deep_merge(dict1, dict2): """ Deep merge two dictionaries """ result = dict1.copy() for key, value in dict2.items(): if key in result and isinstance(result[key], dict) and isinstance(value, dict): result[key] = deep_merge(result[key], value) else: result[key] = value return result # Example base = { "user": {"name": "John", "age": 30}, "settings": {"theme": "dark"} } override = { "user": {"age": 31, "email": "john@example.com"}, "settings": {"language": "en"} } merged = deep_merge(base, override) # Result: { # 'user': {'name': 'John', 'age': 31, 'email': 'john@example.com'}, # 'settings': {'theme': 'dark', 'language': 'en'} # }
jq
# Merge two JSON files jq -s '.[0] * .[1]' file1.json file2.json # Deep merge jq -s 'reduce .[] as $item ({}; . * $item)' file1.json file2.json
Transforming Keys
def transform_keys(obj, transform_fn): """ Transform all keys in JSON structure """ if isinstance(obj, dict): return {transform_fn(k): transform_keys(v, transform_fn) for k, v in obj.items()} elif isinstance(obj, list): return [transform_keys(item, transform_fn) for item in obj] else: return obj # Convert to snake_case import re def to_snake_case(text): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', text) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() data = { "firstName": "John", "lastName": "Doe", "userInfo": { "emailAddress": "john@example.com" } } snake_case_data = transform_keys(data, to_snake_case) # Result: { # 'first_name': 'John', # 'last_name': 'Doe', # 'user_info': {'email_address': 'john@example.com'} # } # Convert to camelCase def to_camel_case(text): components = text.split('_') return components[0] + ''.join(x.title() for x in components[1:])
Format Conversion
JSON to CSV
Python
import json import csv import pandas as pd # Using pandas (recommended) data = [ {"name": "John", "age": 30, "email": "john@example.com"}, {"name": "Jane", "age": 25, "email": "jane@example.com"} ] df = pd.DataFrame(data) df.to_csv('output.csv', index=False) # Using csv module with open('output.csv', 'w', newline='') as csvfile: if data: writer = csv.DictWriter(csvfile, fieldnames=data[0].keys()) writer.writeheader() writer.writerows(data) # Handle nested JSON def flatten_for_csv(data): """Flatten nested JSON for CSV export""" if isinstance(data, list): return [flatten_json(item) for item in data] return flatten_json(data) flattened = flatten_for_csv(data) pd.DataFrame(flattened).to_csv('output.csv', index=False)
jq
# Convert JSON array to CSV cat data.json | jq -r '.[] | [.name, .age, .email] | @csv' # With headers cat data.json | jq -r '["name", "age", "email"], (.[] | [.name, .age, .email]) | @csv'
JSON to YAML
Python
import json import yaml # JSON to YAML with open('data.json', 'r') as json_file: data = json.load(json_file) with open('data.yaml', 'w') as yaml_file: yaml.dump(data, yaml_file, default_flow_style=False) # YAML to JSON with open('data.yaml', 'r') as yaml_file: data = yaml.safe_load(yaml_file) with open('data.json', 'w') as json_file: json.dump(data, json_file, indent=2)
JSON to XML
Python
import json import xml.etree.ElementTree as ET def json_to_xml(json_obj, root_name='root'): """Convert JSON to XML""" def build_xml(parent, obj): if isinstance(obj, dict): for key, val in obj.items(): elem = ET.SubElement(parent, key) build_xml(elem, val) elif isinstance(obj, list): for item in obj: elem = ET.SubElement(parent, 'item') build_xml(elem, item) else: parent.text = str(obj) root = ET.Element(root_name) build_xml(root, json_obj) return ET.tostring(root, encoding='unicode') # Example data = {"user": {"name": "John", "age": 30}} xml_string = json_to_xml(data)
Advanced Transformations
jq-Style Transformations
Python (pyjq)
import pyjq data = { "users": [ {"name": "John", "age": 30, "city": "New York"}, {"name": "Jane", "age": 25, "city": "San Francisco"}, {"name": "Bob", "age": 35, "city": "New York"} ] } # Select and transform result = pyjq.all('.users[] | {name, age}', data) # Filter and group result = pyjq.all('group_by(.city) | map({city: .[0].city, count: length})', data) # Complex transformation result = pyjq.all(''' .users | map(select(.age > 25)) | sort_by(.age) | reverse ''', data)
jq Examples
# Map over array echo '[1,2,3,4,5]' | jq 'map(. * 2)' # Filter and transform cat users.json | jq '.users | map(select(.age > 25) | {name, email})' # Group by field cat data.json | jq 'group_by(.category) | map({category: .[0].category, count: length})' # Calculate sum cat orders.json | jq '[.[] | .amount] | add' # Create new structure cat users.json | jq '{ total: length, users: [.[] | {name, email}], avgAge: ([.[] | .age] | add / length) }' # Conditional logic cat data.json | jq '.[] | if .status == "active" then .name else empty end'
Complex Restructuring
def restructure_json(data): """ Example: Transform flat user records into hierarchical structure """ # Input: [ # {"userId": 1, "name": "John", "orderId": 101, "product": "A"}, # {"userId": 1, "name": "John", "orderId": 102, "product": "B"}, # {"userId": 2, "name": "Jane", "orderId": 103, "product": "C"} # ] # Output: [ # { # "userId": 1, # "name": "John", # "orders": [ # {"orderId": 101, "product": "A"}, # {"orderId": 102, "product": "B"} # ] # }, # { # "userId": 2, # "name": "Jane", # "orders": [{"orderId": 103, "product": "C"}] # } # ] from collections import defaultdict users = defaultdict(lambda: {"orders": []}) for record in data: user_id = record["userId"] if "name" not in users[user_id]: users[user_id]["userId"] = user_id users[user_id]["name"] = record["name"] users[user_id]["orders"].append({ "orderId": record["orderId"], "product": record["product"] }) return list(users.values())
Array Operations
import json def unique_by_key(array, key): """Remove duplicates based on key""" seen = set() result = [] for item in array: value = item.get(key) if value not in seen: seen.add(value) result.append(item) return result def sort_by_key(array, key, reverse=False): """Sort array by key""" return sorted(array, key=lambda x: x.get(key, ''), reverse=reverse) def group_by_key(array, key): """Group array elements by key""" from collections import defaultdict groups = defaultdict(list) for item in array: groups[item.get(key)].append(item) return dict(groups) # Example usage users = [ {"name": "John", "age": 30, "city": "New York"}, {"name": "Jane", "age": 25, "city": "San Francisco"}, {"name": "Bob", "age": 35, "city": "New York"}, {"name": "Alice", "age": 28, "city": "San Francisco"} ] # Sort by age sorted_users = sort_by_key(users, 'age') # Group by city by_city = group_by_key(users, 'city')
JSON Diff and Comparison
import json from deepdiff import DeepDiff def json_diff(obj1, obj2): """Compare two JSON objects and return differences""" diff = DeepDiff(obj1, obj2, ignore_order=True) return diff # Example old = { "name": "John", "age": 30, "addresses": [{"city": "New York"}] } new = { "name": "John", "age": 31, "addresses": [{"city": "San Francisco"}] } diff = json_diff(old, new) print(json.dumps(diff, indent=2)) # Manual diff def simple_diff(obj1, obj2, path=""): """Simple diff implementation""" diffs = [] if type(obj1) != type(obj2): diffs.append(f"{path}: type changed from {type(obj1)} to {type(obj2)}") return diffs if isinstance(obj1, dict): all_keys = set(obj1.keys()) | set(obj2.keys()) for key in all_keys: new_path = f"{path}.{key}" if path else key if key not in obj1: diffs.append(f"{new_path}: added") elif key not in obj2: diffs.append(f"{new_path}: removed") elif obj1[key] != obj2[key]: diffs.extend(simple_diff(obj1[key], obj2[key], new_path)) elif isinstance(obj1, list): if len(obj1) != len(obj2): diffs.append(f"{path}: length changed from {len(obj1)} to {len(obj2)}") for i, (item1, item2) in enumerate(zip(obj1, obj2)): diffs.extend(simple_diff(item1, item2, f"{path}[{i}]")) elif obj1 != obj2: diffs.append(f"{path}: changed from {obj1} to {obj2}") return diffs
Schema Generation
def generate_schema(data, name="root"): """ Generate JSON Schema from data """ if isinstance(data, dict): properties = {} required = [] for key, value in data.items(): properties[key] = generate_schema(value, key) if value is not None: required.append(key) schema = { "type": "object", "properties": properties } if required: schema["required"] = required return schema elif isinstance(data, list): if data: return { "type": "array", "items": generate_schema(data[0], name) } return {"type": "array"} elif isinstance(data, bool): return {"type": "boolean"} elif isinstance(data, int): return {"type": "integer"} elif isinstance(data, float): return {"type": "number"} elif isinstance(data, str): return {"type": "string"} elif data is None: return {"type": "null"} return {} # Example sample_data = { "name": "John", "age": 30, "email": "john@example.com", "active": True, "tags": ["developer", "admin"], "address": { "city": "New York", "zip": "10001" } } schema = generate_schema(sample_data) print(json.dumps(schema, indent=2))
Utility Functions
Pretty Print with Colors
from pygments import highlight from pygments.lexers import JsonLexer from pygments.formatters import TerminalFormatter def pretty_print_json(data): """Print JSON with syntax highlighting""" json_str = json.dumps(data, indent=2, sort_keys=True) print(highlight(json_str, JsonLexer(), TerminalFormatter()))
Safe Access with Default Values
def safe_get(data, path, default=None): """ Safely get nested value from JSON path: "user.address.city" or ["user", "address", "city"] """ if isinstance(path, str): path = path.split('.') current = data for key in path: if isinstance(current, dict): current = current.get(key) elif isinstance(current, list) and key.isdigit(): index = int(key) current = current[index] if 0 <= index < len(current) else None else: return default if current is None: return default return current # Example data = {"user": {"address": {"city": "New York"}}} city = safe_get(data, "user.address.city") # "New York" country = safe_get(data, "user.address.country", "Unknown") # "Unknown"
Command Line Tools
Using jq
# Format JSON cat messy.json | jq '.' # Extract specific fields cat data.json | jq '.users[] | {name, email}' # Filter arrays cat data.json | jq '.[] | select(.age > 30)' # Transform keys to lowercase cat data.json | jq 'with_entries(.key |= ascii_downcase)' # Merge multiple JSON files jq -s 'add' file1.json file2.json file3.json # Convert to CSV cat data.json | jq -r '.[] | [.name, .age, .email] | @csv'
Using Python (command line)
# Pretty print python -m json.tool input.json # Compact output python -c "import json; print(json.dumps(json.load(open('data.json')), separators=(',',':')))" # Extract field python -c "import json; data=json.load(open('data.json')); print(data['users'][0]['name'])"
Best Practices
- Always validate JSON before processing
- Use schema validation for API contracts
- Handle errors gracefully (malformed JSON)
- Use appropriate libraries (jq, jmespath, jsonpath)
- Preserve data types during transformations
- Document complex transformations
- Use version control for schema definitions
- Test transformations with edge cases
- Consider memory usage for large files
- Use streaming parsers for very large JSON
Common Patterns
API Response Transformation
def transform_api_response(response): """Transform API response to application format""" return { "users": [ { "id": user["userId"], "name": f"{user['firstName']} {user['lastName']}", "email": user["emailAddress"], "active": user["status"] == "active" } for user in response.get("data", {}).get("users", []) ], "pagination": { "page": response.get("page", 1), "total": response.get("totalResults", 0) } }
Configuration Merging
def merge_configs(base_config, user_config): """Merge user configuration with base configuration""" result = deep_merge(base_config, user_config) # Validate required fields required = ["database", "api_key"] for field in required: if field not in result: raise ValueError(f"Missing required field: {field}") return result
Notes
- Always handle edge cases (null, empty arrays, missing keys)
- Use appropriate tools for the job (jq for CLI, pandas for data science)
- Consider performance for large JSON files
- Validate schemas in production environments
- Keep transformations idempotent when possible
- Document expected JSON structure
- Use TypeScript/JSON Schema for type safety

CuriousLearner
devkit
Download Skill Files
View Installation GuideDownload the complete skill directory including SKILL.md and all related files