grafana-dashboards
Create and manage production Grafana dashboards for real-time visualization of system and application metrics. Use when building monitoring dashboards, visualizing metrics, or creating operational observability interfaces.
About grafana-dashboards
grafana-dashboards is a Claude AI skill developed by wshobson. Create and manage production Grafana dashboards for real-time visualization of system and application metrics. Use when building monitoring dashboards, visualizing metrics, or creating operational observability interfaces. This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.
Why use grafana-dashboards? With 0 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.
| name | grafana-dashboards |
| description | Create and manage production Grafana dashboards for real-time visualization of system and application metrics. Use when building monitoring dashboards, visualizing metrics, or creating operational observability interfaces. |
Grafana Dashboards
Create and manage production-ready Grafana dashboards for comprehensive system observability.
Purpose
Design effective Grafana dashboards for monitoring applications, infrastructure, and business metrics.
When to Use
- Visualize Prometheus metrics
- Create custom dashboards
- Implement SLO dashboards
- Monitor infrastructure
- Track business KPIs
Dashboard Design Principles
1. Hierarchy of Information
┌─────────────────────────────────────┐
│ Critical Metrics (Big Numbers) │
├─────────────────────────────────────┤
│ Key Trends (Time Series) │
├─────────────────────────────────────┤
│ Detailed Metrics (Tables/Heatmaps) │
└─────────────────────────────────────┘
2. RED Method (Services)
- Rate - Requests per second
- Errors - Error rate
- Duration - Latency/response time
3. USE Method (Resources)
- Utilization - % time resource is busy
- Saturation - Queue length/wait time
- Errors - Error count
Dashboard Structure
API Monitoring Dashboard
{ "dashboard": { "title": "API Monitoring", "tags": ["api", "production"], "timezone": "browser", "refresh": "30s", "panels": [ { "title": "Request Rate", "type": "graph", "targets": [ { "expr": "sum(rate(http_requests_total[5m])) by (service)", "legendFormat": "{{service}}" } ], "gridPos": {"x": 0, "y": 0, "w": 12, "h": 8} }, { "title": "Error Rate %", "type": "graph", "targets": [ { "expr": "(sum(rate(http_requests_total{status=~\"5..\"}[5m])) / sum(rate(http_requests_total[5m]))) * 100", "legendFormat": "Error Rate" } ], "alert": { "conditions": [ { "evaluator": {"params": [5], "type": "gt"}, "operator": {"type": "and"}, "query": {"params": ["A", "5m", "now"]}, "type": "query" } ] }, "gridPos": {"x": 12, "y": 0, "w": 12, "h": 8} }, { "title": "P95 Latency", "type": "graph", "targets": [ { "expr": "histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le, service))", "legendFormat": "{{service}}" } ], "gridPos": {"x": 0, "y": 8, "w": 24, "h": 8} } ] } }
Reference: See assets/api-dashboard.json
Panel Types
1. Stat Panel (Single Value)
{ "type": "stat", "title": "Total Requests", "targets": [{ "expr": "sum(http_requests_total)" }], "options": { "reduceOptions": { "values": false, "calcs": ["lastNotNull"] }, "orientation": "auto", "textMode": "auto", "colorMode": "value" }, "fieldConfig": { "defaults": { "thresholds": { "mode": "absolute", "steps": [ {"value": 0, "color": "green"}, {"value": 80, "color": "yellow"}, {"value": 90, "color": "red"} ] } } } }
2. Time Series Graph
{ "type": "graph", "title": "CPU Usage", "targets": [{ "expr": "100 - (avg by (instance) (rate(node_cpu_seconds_total{mode=\"idle\"}[5m])) * 100)" }], "yaxes": [ {"format": "percent", "max": 100, "min": 0}, {"format": "short"} ] }
3. Table Panel
{ "type": "table", "title": "Service Status", "targets": [{ "expr": "up", "format": "table", "instant": true }], "transformations": [ { "id": "organize", "options": { "excludeByName": {"Time": true}, "indexByName": {}, "renameByName": { "instance": "Instance", "job": "Service", "Value": "Status" } } } ] }
4. Heatmap
{ "type": "heatmap", "title": "Latency Heatmap", "targets": [{ "expr": "sum(rate(http_request_duration_seconds_bucket[5m])) by (le)", "format": "heatmap" }], "dataFormat": "tsbuckets", "yAxis": { "format": "s" } }
Variables
Query Variables
{ "templating": { "list": [ { "name": "namespace", "type": "query", "datasource": "Prometheus", "query": "label_values(kube_pod_info, namespace)", "refresh": 1, "multi": false }, { "name": "service", "type": "query", "datasource": "Prometheus", "query": "label_values(kube_service_info{namespace=\"$namespace\"}, service)", "refresh": 1, "multi": true } ] } }
Use Variables in Queries
sum(rate(http_requests_total{namespace="$namespace", service=~"$service"}[5m]))
Alerts in Dashboards
{ "alert": { "name": "High Error Rate", "conditions": [ { "evaluator": { "params": [5], "type": "gt" }, "operator": {"type": "and"}, "query": { "params": ["A", "5m", "now"] }, "reducer": {"type": "avg"}, "type": "query" } ], "executionErrorState": "alerting", "for": "5m", "frequency": "1m", "message": "Error rate is above 5%", "noDataState": "no_data", "notifications": [ {"uid": "slack-channel"} ] } }
Dashboard Provisioning
dashboards.yml:
apiVersion: 1 providers: - name: 'default' orgId: 1 folder: 'General' type: file disableDeletion: false updateIntervalSeconds: 10 allowUiUpdates: true options: path: /etc/grafana/dashboards
Common Dashboard Patterns
Infrastructure Dashboard
Key Panels:
- CPU utilization per node
- Memory usage per node
- Disk I/O
- Network traffic
- Pod count by namespace
- Node status
Reference: See assets/infrastructure-dashboard.json
Database Dashboard
Key Panels:
- Queries per second
- Connection pool usage
- Query latency (P50, P95, P99)
- Active connections
- Database size
- Replication lag
- Slow queries
Reference: See assets/database-dashboard.json
Application Dashboard
Key Panels:
- Request rate
- Error rate
- Response time (percentiles)
- Active users/sessions
- Cache hit rate
- Queue length
Best Practices
- Start with templates (Grafana community dashboards)
- Use consistent naming for panels and variables
- Group related metrics in rows
- Set appropriate time ranges (default: Last 6 hours)
- Use variables for flexibility
- Add panel descriptions for context
- Configure units correctly
- Set meaningful thresholds for colors
- Use consistent colors across dashboards
- Test with different time ranges
Dashboard as Code
Terraform Provisioning
resource "grafana_dashboard" "api_monitoring" { config_json = file("${path.module}/dashboards/api-monitoring.json") folder = grafana_folder.monitoring.id } resource "grafana_folder" "monitoring" { title = "Production Monitoring" }
Ansible Provisioning
- name: Deploy Grafana dashboards copy: src: "{{ item }}" dest: /etc/grafana/dashboards/ with_fileglob: - "dashboards/*.json" notify: restart grafana
Reference Files
assets/api-dashboard.json- API monitoring dashboardassets/infrastructure-dashboard.json- Infrastructure dashboardassets/database-dashboard.json- Database monitoring dashboardreferences/dashboard-design.md- Dashboard design guide
Related Skills
prometheus-configuration- For metric collectionslo-implementation- For SLO dashboards

wshobson
agents
Download Skill Files
View Installation GuideDownload the complete skill directory including SKILL.md and all related files