sql-optimization-patterns

Master SQL query optimization, indexing strategies, and EXPLAIN analysis to dramatically improve database performance and eliminate slow queries. Use when debugging slow queries, designing database schemas, or optimizing application performance.

About sql-optimization-patterns

sql-optimization-patterns is a Claude AI skill developed by wshobson. Master SQL query optimization, indexing strategies, and EXPLAIN analysis to dramatically improve database performance and eliminate slow queries. Use when debugging slow queries, designing database schemas, or optimizing application performance. This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.

0Stars
0Forks
2025-11-09

Why use sql-optimization-patterns? With 0 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.

namesql-optimization-patterns
descriptionMaster SQL query optimization, indexing strategies, and EXPLAIN analysis to dramatically improve database performance and eliminate slow queries. Use when debugging slow queries, designing database schemas, or optimizing application performance.

SQL Optimization Patterns

Transform slow database queries into lightning-fast operations through systematic optimization, proper indexing, and query plan analysis.

When to Use This Skill

  • Debugging slow-running queries
  • Designing performant database schemas
  • Optimizing application response times
  • Reducing database load and costs
  • Improving scalability for growing datasets
  • Analyzing EXPLAIN query plans
  • Implementing efficient indexes
  • Resolving N+1 query problems

Core Concepts

1. Query Execution Plans (EXPLAIN)

Understanding EXPLAIN output is fundamental to optimization.

PostgreSQL EXPLAIN:

-- Basic explain EXPLAIN SELECT * FROM users WHERE email = 'user@example.com'; -- With actual execution stats EXPLAIN ANALYZE SELECT * FROM users WHERE email = 'user@example.com'; -- Verbose output with more details EXPLAIN (ANALYZE, BUFFERS, VERBOSE) SELECT u.*, o.order_total FROM users u JOIN orders o ON u.id = o.user_id WHERE u.created_at > NOW() - INTERVAL '30 days';

Key Metrics to Watch:

  • Seq Scan: Full table scan (usually slow for large tables)
  • Index Scan: Using index (good)
  • Index Only Scan: Using index without touching table (best)
  • Nested Loop: Join method (okay for small datasets)
  • Hash Join: Join method (good for larger datasets)
  • Merge Join: Join method (good for sorted data)
  • Cost: Estimated query cost (lower is better)
  • Rows: Estimated rows returned
  • Actual Time: Real execution time

2. Index Strategies

Indexes are the most powerful optimization tool.

Index Types:

  • B-Tree: Default, good for equality and range queries
  • Hash: Only for equality (=) comparisons
  • GIN: Full-text search, array queries, JSONB
  • GiST: Geometric data, full-text search
  • BRIN: Block Range INdex for very large tables with correlation
-- Standard B-Tree index CREATE INDEX idx_users_email ON users(email); -- Composite index (order matters!) CREATE INDEX idx_orders_user_status ON orders(user_id, status); -- Partial index (index subset of rows) CREATE INDEX idx_active_users ON users(email) WHERE status = 'active'; -- Expression index CREATE INDEX idx_users_lower_email ON users(LOWER(email)); -- Covering index (include additional columns) CREATE INDEX idx_users_email_covering ON users(email) INCLUDE (name, created_at); -- Full-text search index CREATE INDEX idx_posts_search ON posts USING GIN(to_tsvector('english', title || ' ' || body)); -- JSONB index CREATE INDEX idx_metadata ON events USING GIN(metadata);

3. Query Optimization Patterns

Avoid SELECT *:

-- Bad: Fetches unnecessary columns SELECT * FROM users WHERE id = 123; -- Good: Fetch only what you need SELECT id, email, name FROM users WHERE id = 123;

Use WHERE Clause Efficiently:

-- Bad: Function prevents index usage SELECT * FROM users WHERE LOWER(email) = 'user@example.com'; -- Good: Create functional index or use exact match CREATE INDEX idx_users_email_lower ON users(LOWER(email)); -- Then: SELECT * FROM users WHERE LOWER(email) = 'user@example.com'; -- Or store normalized data SELECT * FROM users WHERE email = 'user@example.com';

Optimize JOINs:

-- Bad: Cartesian product then filter SELECT u.name, o.total FROM users u, orders o WHERE u.id = o.user_id AND u.created_at > '2024-01-01'; -- Good: Filter before join SELECT u.name, o.total FROM users u JOIN orders o ON u.id = o.user_id WHERE u.created_at > '2024-01-01'; -- Better: Filter both tables SELECT u.name, o.total FROM (SELECT * FROM users WHERE created_at > '2024-01-01') u JOIN orders o ON u.id = o.user_id;

Optimization Patterns

Pattern 1: Eliminate N+1 Queries

Problem: N+1 Query Anti-Pattern

# Bad: Executes N+1 queries users = db.query("SELECT * FROM users LIMIT 10") for user in users: orders = db.query("SELECT * FROM orders WHERE user_id = ?", user.id) # Process orders

Solution: Use JOINs or Batch Loading

-- Solution 1: JOIN SELECT u.id, u.name, o.id as order_id, o.total FROM users u LEFT JOIN orders o ON u.id = o.user_id WHERE u.id IN (1, 2, 3, 4, 5); -- Solution 2: Batch query SELECT * FROM orders WHERE user_id IN (1, 2, 3, 4, 5);
# Good: Single query with JOIN or batch load # Using JOIN results = db.query(""" SELECT u.id, u.name, o.id as order_id, o.total FROM users u LEFT JOIN orders o ON u.id = o.user_id WHERE u.id IN (1, 2, 3, 4, 5) """) # Or batch load users = db.query("SELECT * FROM users LIMIT 10") user_ids = [u.id for u in users] orders = db.query( "SELECT * FROM orders WHERE user_id IN (?)", user_ids ) # Group orders by user_id orders_by_user = {} for order in orders: orders_by_user.setdefault(order.user_id, []).append(order)

Pattern 2: Optimize Pagination

Bad: OFFSET on Large Tables

-- Slow for large offsets SELECT * FROM users ORDER BY created_at DESC LIMIT 20 OFFSET 100000; -- Very slow!

Good: Cursor-Based Pagination

-- Much faster: Use cursor (last seen ID) SELECT * FROM users WHERE created_at < '2024-01-15 10:30:00' -- Last cursor ORDER BY created_at DESC LIMIT 20; -- With composite sorting SELECT * FROM users WHERE (created_at, id) < ('2024-01-15 10:30:00', 12345) ORDER BY created_at DESC, id DESC LIMIT 20; -- Requires index CREATE INDEX idx_users_cursor ON users(created_at DESC, id DESC);

Pattern 3: Aggregate Efficiently

Optimize COUNT Queries:

-- Bad: Counts all rows SELECT COUNT(*) FROM orders; -- Slow on large tables -- Good: Use estimates for approximate counts SELECT reltuples::bigint AS estimate FROM pg_class WHERE relname = 'orders'; -- Good: Filter before counting SELECT COUNT(*) FROM orders WHERE created_at > NOW() - INTERVAL '7 days'; -- Better: Use index-only scan CREATE INDEX idx_orders_created ON orders(created_at); SELECT COUNT(*) FROM orders WHERE created_at > NOW() - INTERVAL '7 days';

Optimize GROUP BY:

-- Bad: Group by then filter SELECT user_id, COUNT(*) as order_count FROM orders GROUP BY user_id HAVING COUNT(*) > 10; -- Better: Filter first, then group (if possible) SELECT user_id, COUNT(*) as order_count FROM orders WHERE status = 'completed' GROUP BY user_id HAVING COUNT(*) > 10; -- Best: Use covering index CREATE INDEX idx_orders_user_status ON orders(user_id, status);

Pattern 4: Subquery Optimization

Transform Correlated Subqueries:

-- Bad: Correlated subquery (runs for each row) SELECT u.name, u.email, (SELECT COUNT(*) FROM orders o WHERE o.user_id = u.id) as order_count FROM users u; -- Good: JOIN with aggregation SELECT u.name, u.email, COUNT(o.id) as order_count FROM users u LEFT JOIN orders o ON o.user_id = u.id GROUP BY u.id, u.name, u.email; -- Better: Use window functions SELECT DISTINCT ON (u.id) u.name, u.email, COUNT(o.id) OVER (PARTITION BY u.id) as order_count FROM users u LEFT JOIN orders o ON o.user_id = u.id;

Use CTEs for Clarity:

-- Using Common Table Expressions WITH recent_users AS ( SELECT id, name, email FROM users WHERE created_at > NOW() - INTERVAL '30 days' ), user_order_counts AS ( SELECT user_id, COUNT(*) as order_count FROM orders WHERE created_at > NOW() - INTERVAL '30 days' GROUP BY user_id ) SELECT ru.name, ru.email, COALESCE(uoc.order_count, 0) as orders FROM recent_users ru LEFT JOIN user_order_counts uoc ON ru.id = uoc.user_id;

Pattern 5: Batch Operations

Batch INSERT:

-- Bad: Multiple individual inserts INSERT INTO users (name, email) VALUES ('Alice', 'alice@example.com'); INSERT INTO users (name, email) VALUES ('Bob', 'bob@example.com'); INSERT INTO users (name, email) VALUES ('Carol', 'carol@example.com'); -- Good: Batch insert INSERT INTO users (name, email) VALUES ('Alice', 'alice@example.com'), ('Bob', 'bob@example.com'), ('Carol', 'carol@example.com'); -- Better: Use COPY for bulk inserts (PostgreSQL) COPY users (name, email) FROM '/tmp/users.csv' CSV HEADER;

Batch UPDATE:

-- Bad: Update in loop UPDATE users SET status = 'active' WHERE id = 1; UPDATE users SET status = 'active' WHERE id = 2; -- ... repeat for many IDs -- Good: Single UPDATE with IN clause UPDATE users SET status = 'active' WHERE id IN (1, 2, 3, 4, 5, ...); -- Better: Use temporary table for large batches CREATE TEMP TABLE temp_user_updates (id INT, new_status VARCHAR); INSERT INTO temp_user_updates VALUES (1, 'active'), (2, 'active'), ...; UPDATE users u SET status = t.new_status FROM temp_user_updates t WHERE u.id = t.id;

Advanced Techniques

Materialized Views

Pre-compute expensive queries.

-- Create materialized view CREATE MATERIALIZED VIEW user_order_summary AS SELECT u.id, u.name, COUNT(o.id) as total_orders, SUM(o.total) as total_spent, MAX(o.created_at) as last_order_date FROM users u LEFT JOIN orders o ON u.id = o.user_id GROUP BY u.id, u.name; -- Add index to materialized view CREATE INDEX idx_user_summary_spent ON user_order_summary(total_spent DESC); -- Refresh materialized view REFRESH MATERIALIZED VIEW user_order_summary; -- Concurrent refresh (PostgreSQL) REFRESH MATERIALIZED VIEW CONCURRENTLY user_order_summary; -- Query materialized view (very fast) SELECT * FROM user_order_summary WHERE total_spent > 1000 ORDER BY total_spent DESC;

Partitioning

Split large tables for better performance.

-- Range partitioning by date (PostgreSQL) CREATE TABLE orders ( id SERIAL, user_id INT, total DECIMAL, created_at TIMESTAMP ) PARTITION BY RANGE (created_at); -- Create partitions CREATE TABLE orders_2024_q1 PARTITION OF orders FOR VALUES FROM ('2024-01-01') TO ('2024-04-01'); CREATE TABLE orders_2024_q2 PARTITION OF orders FOR VALUES FROM ('2024-04-01') TO ('2024-07-01'); -- Queries automatically use appropriate partition SELECT * FROM orders WHERE created_at BETWEEN '2024-02-01' AND '2024-02-28'; -- Only scans orders_2024_q1 partition

Query Hints and Optimization

-- Force index usage (MySQL) SELECT * FROM users USE INDEX (idx_users_email) WHERE email = 'user@example.com'; -- Parallel query (PostgreSQL) SET max_parallel_workers_per_gather = 4; SELECT * FROM large_table WHERE condition; -- Join hints (PostgreSQL) SET enable_nestloop = OFF; -- Force hash or merge join

Best Practices

  1. Index Selectively: Too many indexes slow down writes
  2. Monitor Query Performance: Use slow query logs
  3. Keep Statistics Updated: Run ANALYZE regularly
  4. Use Appropriate Data Types: Smaller types = better performance
  5. Normalize Thoughtfully: Balance normalization vs performance
  6. Cache Frequently Accessed Data: Use application-level caching
  7. Connection Pooling: Reuse database connections
  8. Regular Maintenance: VACUUM, ANALYZE, rebuild indexes
-- Update statistics ANALYZE users; ANALYZE VERBOSE orders; -- Vacuum (PostgreSQL) VACUUM ANALYZE users; VACUUM FULL users; -- Reclaim space (locks table) -- Reindex REINDEX INDEX idx_users_email; REINDEX TABLE users;

Common Pitfalls

  • Over-Indexing: Each index slows down INSERT/UPDATE/DELETE
  • Unused Indexes: Waste space and slow writes
  • Missing Indexes: Slow queries, full table scans
  • Implicit Type Conversion: Prevents index usage
  • OR Conditions: Can't use indexes efficiently
  • LIKE with Leading Wildcard: LIKE '%abc' can't use index
  • Function in WHERE: Prevents index usage unless functional index exists

Monitoring Queries

-- Find slow queries (PostgreSQL) SELECT query, calls, total_time, mean_time FROM pg_stat_statements ORDER BY mean_time DESC LIMIT 10; -- Find missing indexes (PostgreSQL) SELECT schemaname, tablename, seq_scan, seq_tup_read, idx_scan, seq_tup_read / seq_scan AS avg_seq_tup_read FROM pg_stat_user_tables WHERE seq_scan > 0 ORDER BY seq_tup_read DESC LIMIT 10; -- Find unused indexes (PostgreSQL) SELECT schemaname, tablename, indexname, idx_scan, idx_tup_read, idx_tup_fetch FROM pg_stat_user_indexes WHERE idx_scan = 0 ORDER BY pg_relation_size(indexrelid) DESC;

Resources

  • references/postgres-optimization-guide.md: PostgreSQL-specific optimization
  • references/mysql-optimization-guide.md: MySQL/MariaDB optimization
  • references/query-plan-analysis.md: Deep dive into EXPLAIN plans
  • assets/index-strategy-checklist.md: When and how to create indexes
  • assets/query-optimization-checklist.md: Step-by-step optimization guide
  • scripts/analyze-slow-queries.sql: Identify slow queries in your database
  • scripts/index-recommendations.sql: Generate index recommendations
wshobson

wshobson

agents

View on GitHub

Download Skill Files

View Installation Guide

Download the complete skill directory including SKILL.md and all related files