chart-generator
Generate charts and visualizations from data using various charting libraries and formats.
About chart-generator
chart-generator is a Claude AI skill developed by CuriousLearner. Generate charts and visualizations from data using various charting libraries and formats. This powerful Claude Code plugin helps developers automate workflows and enhance productivity with intelligent AI assistance.
Why use chart-generator? With 0 stars on GitHub, this skill has been trusted by developers worldwide. Install this Claude skill instantly to enhance your development workflow with AI-powered automation.
| name | chart-generator |
| description | Generate charts and visualizations from data using various charting libraries and formats. |
Chart Generator Skill
Generate charts and visualizations from data using various charting libraries and formats.
Instructions
You are a data visualization expert. When invoked:
-
Analyze Data:
- Understand data structure and types
- Identify appropriate chart types
- Detect data patterns and trends
- Calculate aggregations and statistics
- Determine visualization goals
-
Generate Charts:
- Create bar, line, pie, scatter plots
- Generate heatmaps and tree maps
- Create histograms and box plots
- Build time series visualizations
- Design multi-dimensional charts
-
Style and Customize:
- Apply color schemes and themes
- Add labels, legends, and annotations
- Format axes and gridlines
- Customize tooltips and interactions
- Ensure accessibility and readability
-
Export and Embed:
- Save as PNG, SVG, PDF
- Generate interactive HTML charts
- Embed in markdown reports
- Create chart APIs
- Support responsive design
Usage Examples
@chart-generator data.csv --type bar
@chart-generator --line --time-series
@chart-generator --pie --group-by category
@chart-generator --scatter x:age y:income
@chart-generator --heatmap --correlation
@chart-generator --interactive --html
Chart Types and Use Cases
When to Use Each Chart Type
| Chart Type | Best For | Example Use Case |
|---|---|---|
| Bar Chart | Comparing categories | Sales by product |
| Line Chart | Trends over time | Revenue over months |
| Pie Chart | Part-to-whole relationships | Market share |
| Scatter Plot | Relationships between variables | Height vs Weight |
| Histogram | Distribution of values | Age distribution |
| Box Plot | Statistical distribution | Salary ranges by department |
| Heatmap | Matrix data, correlations | Feature correlations |
| Area Chart | Cumulative trends | Stacked revenue streams |
| Bubble Chart | 3-dimensional data | Sales vs Profit vs Market Share |
| Treemap | Hierarchical data | Disk space usage |
Python - Matplotlib
import matplotlib.pyplot as plt import numpy as np import pandas as pd def create_bar_chart(data, x_col, y_col, title='Bar Chart', output='chart.png'): """ Create a bar chart """ plt.figure(figsize=(10, 6)) if isinstance(data, pd.DataFrame): x = data[x_col] y = data[y_col] else: x = data['labels'] y = data['values'] bars = plt.bar(x, y, color='steelblue', alpha=0.8) # Add value labels on bars for bar in bars: height = bar.get_height() plt.text(bar.get_x() + bar.get_width()/2., height, f'{height:.1f}', ha='center', va='bottom') plt.title(title, fontsize=16, fontweight='bold') plt.xlabel(x_col if isinstance(data, pd.DataFrame) else 'Category', fontsize=12) plt.ylabel(y_col if isinstance(data, pd.DataFrame) else 'Value', fontsize=12) plt.xticks(rotation=45, ha='right') plt.grid(axis='y', alpha=0.3) plt.tight_layout() plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output def create_line_chart(data, x_col, y_col, title='Line Chart', output='chart.png'): """ Create a line chart """ plt.figure(figsize=(12, 6)) if isinstance(data, pd.DataFrame): x = data[x_col] y = data[y_col] else: x = data['x'] y = data['y'] plt.plot(x, y, marker='o', linewidth=2, markersize=6, color='steelblue') # Add grid plt.grid(True, alpha=0.3) plt.title(title, fontsize=16, fontweight='bold') plt.xlabel(x_col if isinstance(data, pd.DataFrame) else 'X', fontsize=12) plt.ylabel(y_col if isinstance(data, pd.DataFrame) else 'Y', fontsize=12) plt.xticks(rotation=45, ha='right') plt.tight_layout() plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output def create_pie_chart(data, labels_col, values_col, title='Pie Chart', output='chart.png'): """ Create a pie chart """ plt.figure(figsize=(10, 8)) if isinstance(data, pd.DataFrame): labels = data[labels_col] values = data[values_col] else: labels = data['labels'] values = data['values'] # Create color palette colors = plt.cm.Set3(np.linspace(0, 1, len(labels))) # Create pie chart wedges, texts, autotexts = plt.pie( values, labels=labels, autopct='%1.1f%%', startangle=90, colors=colors, explode=[0.05] * len(labels) # Slightly separate slices ) # Style percentage text for autotext in autotexts: autotext.set_color('white') autotext.set_fontweight('bold') autotext.set_fontsize(10) plt.title(title, fontsize=16, fontweight='bold') plt.axis('equal') plt.tight_layout() plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output def create_scatter_plot(data, x_col, y_col, color_col=None, size_col=None, title='Scatter Plot', output='chart.png'): """ Create a scatter plot """ plt.figure(figsize=(10, 8)) if isinstance(data, pd.DataFrame): x = data[x_col] y = data[y_col] c = data[color_col] if color_col else None s = data[size_col] if size_col else 50 else: x = data['x'] y = data['y'] c = None s = 50 scatter = plt.scatter(x, y, c=c, s=s, alpha=0.6, cmap='viridis') if color_col: plt.colorbar(scatter, label=color_col) # Add trend line z = np.polyfit(x, y, 1) p = np.poly1d(z) plt.plot(x, p(x), "r--", alpha=0.8, label='Trend') plt.title(title, fontsize=16, fontweight='bold') plt.xlabel(x_col if isinstance(data, pd.DataFrame) else 'X', fontsize=12) plt.ylabel(y_col if isinstance(data, pd.DataFrame) else 'Y', fontsize=12) plt.grid(True, alpha=0.3) plt.legend() plt.tight_layout() plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output def create_histogram(data, column, bins=30, title='Histogram', output='chart.png'): """ Create a histogram """ plt.figure(figsize=(10, 6)) if isinstance(data, pd.DataFrame): values = data[column] else: values = data n, bins, patches = plt.hist(values, bins=bins, color='steelblue', alpha=0.7, edgecolor='black') # Add mean line mean_val = np.mean(values) plt.axvline(mean_val, color='red', linestyle='dashed', linewidth=2, label=f'Mean: {mean_val:.2f}') # Add median line median_val = np.median(values) plt.axvline(median_val, color='green', linestyle='dashed', linewidth=2, label=f'Median: {median_val:.2f}') plt.title(title, fontsize=16, fontweight='bold') plt.xlabel(column if isinstance(data, pd.DataFrame) else 'Value', fontsize=12) plt.ylabel('Frequency', fontsize=12) plt.legend() plt.grid(axis='y', alpha=0.3) plt.tight_layout() plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output def create_box_plot(data, columns, title='Box Plot', output='chart.png'): """ Create a box plot """ plt.figure(figsize=(10, 6)) if isinstance(data, pd.DataFrame): data_to_plot = [data[col].dropna() for col in columns] labels = columns else: data_to_plot = data labels = [f'Group {i+1}' for i in range(len(data))] bp = plt.boxplot(data_to_plot, labels=labels, patch_artist=True) # Color boxes for patch in bp['boxes']: patch.set_facecolor('lightblue') patch.set_alpha(0.7) plt.title(title, fontsize=16, fontweight='bold') plt.ylabel('Value', fontsize=12) plt.grid(axis='y', alpha=0.3) plt.xticks(rotation=45, ha='right') plt.tight_layout() plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output def create_heatmap(data, title='Heatmap', output='chart.png'): """ Create a heatmap (correlation matrix) """ plt.figure(figsize=(10, 8)) if isinstance(data, pd.DataFrame): # Calculate correlation matrix corr_matrix = data.corr() else: corr_matrix = data # Create heatmap im = plt.imshow(corr_matrix, cmap='coolwarm', aspect='auto', vmin=-1, vmax=1) # Add colorbar cbar = plt.colorbar(im) cbar.set_label('Correlation', rotation=270, labelpad=20) # Set ticks and labels plt.xticks(range(len(corr_matrix.columns)), corr_matrix.columns, rotation=45, ha='right') plt.yticks(range(len(corr_matrix.columns)), corr_matrix.columns) # Add correlation values for i in range(len(corr_matrix)): for j in range(len(corr_matrix.columns)): text = plt.text(j, i, f'{corr_matrix.iloc[i, j]:.2f}', ha='center', va='center', color='black', fontsize=9) plt.title(title, fontsize=16, fontweight='bold', pad=20) plt.tight_layout() plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output
Python - Seaborn
import seaborn as sns def create_seaborn_chart(data, chart_type, x, y=None, hue=None, title='Chart', output='chart.png'): """ Create charts using Seaborn """ plt.figure(figsize=(12, 6)) # Set style sns.set_style("whitegrid") sns.set_palette("husl") if chart_type == 'bar': sns.barplot(data=data, x=x, y=y, hue=hue) elif chart_type == 'line': sns.lineplot(data=data, x=x, y=y, hue=hue, marker='o') elif chart_type == 'scatter': sns.scatterplot(data=data, x=x, y=y, hue=hue, size=hue, alpha=0.6) elif chart_type == 'box': sns.boxplot(data=data, x=x, y=y, hue=hue) elif chart_type == 'violin': sns.violinplot(data=data, x=x, y=y, hue=hue) elif chart_type == 'dist': sns.histplot(data=data, x=x, hue=hue, kde=True) elif chart_type == 'heatmap': sns.heatmap(data.corr(), annot=True, fmt='.2f', cmap='coolwarm', center=0, square=True, linewidths=1) elif chart_type == 'pairplot': # Special case - creates its own figure g = sns.pairplot(data, hue=hue) g.savefig(output, dpi=300, bbox_inches='tight') return output plt.title(title, fontsize=16, fontweight='bold') plt.xticks(rotation=45, ha='right') plt.tight_layout() plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output # Advanced Seaborn visualizations def create_facet_grid(data, x, y, col=None, row=None, hue=None, title='Facet Grid', output='chart.png'): """ Create faceted charts """ g = sns.FacetGrid(data, col=col, row=row, hue=hue, height=4) g.map(sns.scatterplot, x, y, alpha=0.6) g.add_legend() g.fig.suptitle(title, y=1.02, fontsize=16, fontweight='bold') plt.savefig(output, dpi=300, bbox_inches='tight') plt.close() return output
JavaScript - Chart.js
const { ChartJSNodeCanvas } = require('chartjs-node-canvas'); async function createBarChart(data, options = {}) { const width = options.width || 800; const height = options.height || 600; const chartJSNodeCanvas = new ChartJSNodeCanvas({ width, height }); const configuration = { type: 'bar', data: { labels: data.labels, datasets: [{ label: options.label || 'Dataset', data: data.values, backgroundColor: 'rgba(54, 162, 235, 0.6)', borderColor: 'rgba(54, 162, 235, 1)', borderWidth: 2 }] }, options: { responsive: true, plugins: { title: { display: true, text: options.title || 'Bar Chart', font: { size: 18 } }, legend: { display: true, position: 'top' } }, scales: { y: { beginAtZero: true } } } }; const imageBuffer = await chartJSNodeCanvas.renderToBuffer(configuration); return imageBuffer; } async function createLineChart(data, options = {}) { const width = options.width || 800; const height = options.height || 600; const chartJSNodeCanvas = new ChartJSNodeCanvas({ width, height }); const configuration = { type: 'line', data: { labels: data.labels, datasets: [{ label: options.label || 'Dataset', data: data.values, borderColor: 'rgba(75, 192, 192, 1)', backgroundColor: 'rgba(75, 192, 192, 0.2)', borderWidth: 2, tension: 0.4 }] }, options: { responsive: true, plugins: { title: { display: true, text: options.title || 'Line Chart', font: { size: 18 } } }, scales: { y: { beginAtZero: true } } } }; const imageBuffer = await chartJSNodeCanvas.renderToBuffer(configuration); return imageBuffer; } async function createPieChart(data, options = {}) { const width = options.width || 800; const height = options.height || 600; const chartJSNodeCanvas = new ChartJSNodeCanvas({ width, height }); const configuration = { type: 'pie', data: { labels: data.labels, datasets: [{ data: data.values, backgroundColor: [ 'rgba(255, 99, 132, 0.6)', 'rgba(54, 162, 235, 0.6)', 'rgba(255, 206, 86, 0.6)', 'rgba(75, 192, 192, 0.6)', 'rgba(153, 102, 255, 0.6)', 'rgba(255, 159, 64, 0.6)' ], borderWidth: 2 }] }, options: { responsive: true, plugins: { title: { display: true, text: options.title || 'Pie Chart', font: { size: 18 } }, legend: { position: 'right' } } } }; const imageBuffer = await chartJSNodeCanvas.renderToBuffer(configuration); return imageBuffer; }
Interactive Charts - Plotly
import plotly.express as px import plotly.graph_objects as go def create_interactive_bar(data, x, y, title='Bar Chart', output='chart.html'): """ Create interactive bar chart with Plotly """ fig = px.bar(data, x=x, y=y, title=title, color=y, color_continuous_scale='Viridis') fig.update_layout( font=dict(size=14), showlegend=True, hovermode='x unified' ) fig.write_html(output) return output def create_interactive_line(data, x, y, title='Line Chart', output='chart.html'): """ Create interactive line chart """ fig = px.line(data, x=x, y=y, title=title, markers=True) fig.update_traces(line=dict(width=3)) fig.update_layout( hovermode='x unified', font=dict(size=14) ) fig.write_html(output) return output def create_interactive_scatter(data, x, y, color=None, size=None, title='Scatter Plot', output='chart.html'): """ Create interactive scatter plot """ fig = px.scatter(data, x=x, y=y, color=color, size=size, title=title, hover_data=data.columns) fig.update_traces(marker=dict(line=dict(width=0.5, color='white'))) fig.write_html(output) return output def create_3d_scatter(data, x, y, z, color=None, title='3D Scatter', output='chart.html'): """ Create 3D scatter plot """ fig = px.scatter_3d(data, x=x, y=y, z=z, color=color, title=title) fig.update_layout(scene=dict( xaxis_title=x, yaxis_title=y, zaxis_title=z )) fig.write_html(output) return output def create_time_series(data, date_col, value_col, title='Time Series', output='chart.html'): """ Create time series chart """ fig = go.Figure() fig.add_trace(go.Scatter( x=data[date_col], y=data[value_col], mode='lines+markers', name=value_col, line=dict(width=2), marker=dict(size=6) )) # Add range slider fig.update_xaxes( rangeslider_visible=True, rangeselector=dict( buttons=list([ dict(count=7, label="1w", step="day", stepmode="backward"), dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=3, label="3m", step="month", stepmode="backward"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all") ]) ) ) fig.update_layout( title=title, xaxis_title=date_col, yaxis_title=value_col, font=dict(size=14) ) fig.write_html(output) return output def create_dashboard(data, output='dashboard.html'): """ Create multi-chart dashboard """ from plotly.subplots import make_subplots fig = make_subplots( rows=2, cols=2, subplot_titles=('Bar Chart', 'Line Chart', 'Pie Chart', 'Scatter Plot'), specs=[[{'type': 'bar'}, {'type': 'scatter'}], [{'type': 'pie'}, {'type': 'scatter'}]] ) # Add charts # Bar chart fig.add_trace( go.Bar(x=data['category'], y=data['value1'], name='Bar'), row=1, col=1 ) # Line chart fig.add_trace( go.Scatter(x=data['date'], y=data['value2'], mode='lines', name='Line'), row=1, col=2 ) # Pie chart fig.add_trace( go.Pie(labels=data['category'], values=data['value1'], name='Pie'), row=2, col=1 ) # Scatter plot fig.add_trace( go.Scatter(x=data['value1'], y=data['value2'], mode='markers', name='Scatter'), row=2, col=2 ) fig.update_layout(height=800, showlegend=True, title_text="Dashboard") fig.write_html(output) return output
Chart Styling and Themes
# Matplotlib themes def apply_matplotlib_theme(theme='default'): """ Apply theme to matplotlib charts """ themes = { 'default': 'seaborn-v0_8-darkgrid', 'minimal': 'seaborn-v0_8-whitegrid', 'dark': 'dark_background', 'classic': 'classic', 'ggplot': 'ggplot' } plt.style.use(themes.get(theme, 'default')) # Custom color palettes COLOR_PALETTES = { 'corporate': ['#003f5c', '#58508d', '#bc5090', '#ff6361', '#ffa600'], 'pastel': ['#a8e6cf', '#dcedc1', '#ffd3b6', '#ffaaa5', '#ff8b94'], 'vibrant': ['#e74c3c', '#3498db', '#2ecc71', '#f39c12', '#9b59b6'], 'monochrome': ['#2c3e50', '#34495e', '#7f8c8d', '#95a5a6', '#bdc3c7'] } def apply_color_palette(palette_name='corporate'): """Apply custom color palette""" colors = COLOR_PALETTES.get(palette_name, COLOR_PALETTES['corporate']) plt.rcParams['axes.prop_cycle'] = plt.cycler(color=colors)
Export Formats
def export_chart_multiple_formats(fig, base_name='chart'): """ Export chart in multiple formats """ formats = { 'png': {'dpi': 300, 'transparent': False}, 'svg': {'format': 'svg'}, 'pdf': {'format': 'pdf'}, 'jpg': {'dpi': 300, 'format': 'jpg'} } files = [] for fmt, kwargs in formats.items(): output_file = f"{base_name}.{fmt}" fig.savefig(output_file, bbox_inches='tight', **kwargs) files.append(output_file) return files
Chart Generation Pipeline
def generate_charts_from_data(data, chart_configs, output_dir='charts'): """ Generate multiple charts from data based on configurations chart_configs = [ { 'type': 'bar', 'x': 'category', 'y': 'value', 'title': 'Sales by Category', 'output': 'sales_bar.png' }, ... ] """ import os os.makedirs(output_dir, exist_ok=True) generated_charts = [] for config in chart_configs: chart_type = config['type'] output = os.path.join(output_dir, config['output']) if chart_type == 'bar': create_bar_chart(data, config['x'], config['y'], config.get('title', 'Chart'), output) elif chart_type == 'line': create_line_chart(data, config['x'], config['y'], config.get('title', 'Chart'), output) elif chart_type == 'pie': create_pie_chart(data, config['x'], config['y'], config.get('title', 'Chart'), output) elif chart_type == 'scatter': create_scatter_plot(data, config['x'], config['y'], config.get('color'), config.get('size'), config.get('title', 'Chart'), output) elif chart_type == 'heatmap': create_heatmap(data, config.get('title', 'Chart'), output) generated_charts.append({ 'type': chart_type, 'title': config.get('title'), 'file': output }) return generated_charts
Best Practices
- Choose appropriate chart types for your data
- Use clear, descriptive titles and labels
- Apply consistent color schemes across charts
- Ensure readability (font sizes, contrast)
- Add context (annotations, reference lines)
- Export in high resolution (300 DPI minimum)
- Consider accessibility (color-blind friendly palettes)
- Test on different screen sizes (responsive design)
- Optimize file sizes for web use
- Document chart generation code for reproducibility
Common Chart Patterns
Comparison Charts
- Bar charts for categorical comparisons
- Grouped bar charts for multi-series comparison
- Stacked bar charts for part-to-whole comparisons
Trend Charts
- Line charts for time series
- Area charts for cumulative trends
- Sparklines for inline trends
Distribution Charts
- Histograms for frequency distribution
- Box plots for statistical distribution
- Violin plots for distribution shape
Relationship Charts
- Scatter plots for correlations
- Bubble charts for 3D relationships
- Heatmaps for matrix relationships
Composition Charts
- Pie charts for simple part-to-whole
- Stacked area charts for trends over time
- Treemaps for hierarchical composition
Notes
- Always label axes and provide units
- Use appropriate scales (linear, logarithmic)
- Consider data-ink ratio (minimize chart junk)
- Test charts with different data ranges
- Provide legends when using multiple series
- Use annotations to highlight key insights
- Export charts in vector formats for publications
- Keep color schemes consistent across related charts
- Consider cultural differences in color meanings
- Validate data before visualization

CuriousLearner
devkit
Download Skill Files
View Installation GuideDownload the complete skill directory including SKILL.md and all related files